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EDITORIAL
In the paper “PV Integration in LV Networks and Capacity Analy-
sis” the authors address one of the key technical challenges of 
the energy transition: the integration of photovoltaic (PV) systems 
into low-voltage (LV) distribution networks. The paper presents a 
detailed simulation-based analysis using MATLAB to model volt-
age drops and conductor capacities for varying PV penetration 
levels—from 3 kW to 8 kW per consumer. A significant innova-
tion lies in the use of a feedforward neural network trained on 
solar irradiance, temperature, and cloud cover to forecast day-
ahead PV generation. The results confirm that the LV network 
can safely host up to 8 kW of PV per household without violat-
ing voltage limits (+5%, -10%) or exceeding conductor thermal 
thresholds. The comparison between modeled and predicted 
generation shows minimal deviation, validating the proposed 
predictive framework. The study underlines the importance of 
combining accurate forecasting with iterative capacity evalua-
tion to support reliable and optimized renewable integration in 
residential networks. 

The second paper, “Diesel Engine Performance and Emission 
Properties using Kariya Biodiesel” evaluates diesel engine per-
formance and emission properties when fuelled with an already-
produced kariya oil biodiesel (KOB) and KOB blends. The perfor-
mance evaluation (fuel consumption, brake power, and exhaust 
gas temperature) of a diesel engine (Nulux R175A Diesel Engine) 
fuelled with KOB and its blends were determined. The brake 
power and the exhaust gas temperature were determined during 
operation using a Schenck W230 Eddy Current dynamometer 
and a thermometer respectively. Using a hand-held exhaust gas 
analyzer (Product Model: Aeroqual Series 500), emission char-
acteristics were also determined. It was observed that the fuel 
consumed by the engine increased as biodiesel increased in the 
blends. Importantly, the study confirms that KOB has favorable 
combustion characteristics and can serve as a sustainable bio-
fuel option without competing with food production.

The third paper, “The Roles of Battery Energy Storage System 
in Different Energy Communities” examines the role of Battery 
Energy Storage Systems in three distinct types of energy com-
munities: self-consumption-oriented, prosumer-sharing, and 
grid-supporting. Using simulations based on real consumption 
and generation data, the authors explore how BESS sizing and 
control strategies affect key performance indicators such as self-
sufficiency, grid exchange, and energy balancing. The findings 
show that a well-dimensioned BESS can increase local energy 
self-consumption by over 60% and reduce grid dependency 
significantly during peak hours. In community-sharing configu-
rations, storage enables energy sharing between households 
with asynchronous demand and production patterns. The study 
also emphasizes that the optimal operation of BESS depends on 
regulatory support and appropriate business models that incen-
tivize storage investment and participation in flexibility markets.

The article “Regional Solar Irradiance Forecasting Using Multi-
Camera Sky Imagery and Machine Learning Models” presents a 
cutting-edge approach to short-term solar irradiance forecasting 
using machine learning and sky imagery from multiple ground-
based cameras. The authors implement a convolutional neural 
network (CNN) trained on images of sky conditions and concur-
rent meteorological parameters to predict solar radiation over a 
short time horizon. By comparing model outputs with measured 
irradiance data, the CNN-based method demonstrated high ac-
curacy, especially in detecting fast-moving cloud cover changes 
that traditional numerical weather prediction models often miss. 
The proposed method is computationally efficient and highly 
scalable, making it suitable for regional PV plant operation and 
grid dispatch planning. This work represents a significant ad-
vancement in solar forecasting techniques, offering a valuable 
tool for managing variability in solar energy generation.
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PV Integration in LV Networks and Capacity Analysis
Maja Muftić Dedović, Samir Avdaković, Adin Memić

Summary — The increasing integration of photovoltaic (PV) 
systems in low-voltage (LV) networks presents challenges in violation 
of permitted voltage changes in the LV network and conductor and 
transformer capacity, which are critical for maintaining grid reliabi-
lity and operational efficiency. This paper analyzes PV integration, 
focusing on voltage control, conductor capacity, and the importance 
of day-ahead PV generation and consumption for proactive grid ma-
nagement. Using MATLAB, the LV network is modeled to assess vol-
tage analysis and conductor capacity for PV capacities ranging from 
3 kW to 8 kW per consumer. Predictions of day-ahead PV production 
are conducted using a feedforward neural network trained on meteo-
rological data such as solar irradiance, temperature, and cloud cover. 
The predictive model enabled voltage drop simulations and capacity 
analysis under forecasted conditions. The results demonstrated that 
voltage levels remained within the permissible range (+5%, -10% of 
400 V) for PV capacities up to 8 kW, ensuring operational reliabi-
lity. The neural network-based predictions are closely aligned with 
modeled values, with minimal differences, validating the forecasting 
approach. Voltage variations increased with higher PV capacities, 
but conductor current levels consistently remained below thermal 
limits. Incremental PV capacity integration revealed the network’s 
ability to support distributed generation effectively but with limitati-
ons at higher capacities. This research highlights the role of accurate 
forecasting and optimization in ensuring reliable renewable energy 
adoption.

Keywords — Distributed Energy Resources (DERs), Low-Volta-
ge Networks, Neural Networks, Optimization, Prosumers, Voltage 
Analysis.

I. IntroductIon

The increasing penetration of distributed energy resources 
(DERs), particularly photovoltaic (PV) systems, poses si-
gnificant challenges and opportunities for modern power 

distribution networks. With the emergence of prosumers, entities 
capable of both consuming and producing electricity, and energy 
communities, the dynamics of energy generation, consumption, 
and grid interaction are rapidly evolving. Efficiently managing 
these interactions is critical to ensuring grid stability, optimizing 
energy utilization, and supporting the transition towards sustaina-
ble energy systems. 

Reference [1] address these challenges by proposing a distribu-
ted congestion management scheme based on iterative distribution 
locational marginal pricing (iDLMP). Their approach optimizes 
prosumer energy operations to alleviate congestion in distributi-
on networks. By considering prosumers as self-organizing units 
capable of integrating diverse resource flexibilities their scheme 
enhances local energy sharing and supports the efficient integration 
of DERs. Incorporating such innovative congestion management 
strategies is crucial for improving hosting capacities and ensuring 
stable operation of low-voltage (LV) networks with high DER 
penetration. Building upon these insights, this research aims to 
further optimize prosumer integration by addressing voltage regu-
lation challenges and conductor capacity evaluation.

One of the primary challenges associated with PV integration 
is managing the voltage variations caused by fluctuating energy 
generation. These fluctuations can lead to voltage drops or rise, po-
tentially exceeding permissible limits and impacting the quality of 
the power supply. Additionally, the capacity of existing conductors 
may be insufficient to handle the increased power flow, necessi-
tating careful evaluation to avoid thermal overloads and maintain 
operational safety.

This paper addresses these challenges by analyzing the effects 
of PV integration on voltage profiles and conductor capacity in LV 
networks. The research employs a systematic methodology to eva-
luate the feasibility of PV integration while ensuring network re-
liability and compliance with operational standards. The proposed 
approach includes modeling the network’s electrical and geometric 
characteristics, assessing PV production dynamics, and conduc-
ting iterative optimization to identify maximum permissible PV 
capacities.

The findings of this research aim to provide practical insights 
for grid operators, policymakers, and engineers in planning and op-
timizing PV system integration in LV networks, ensuring a balance 
between renewable energy adoption and system reliability.

A key novelty of this paper is the quantitative evaluation of 
PV hosting capacity under different penetration scenarios while 
ensuring compliance with operational voltage limits and conductor 
thermal ratings. The paper also introduces an iterative assessment 
methodology that systematically determines the maximum allowa-
ble PV capacity in an LV network, offering valuable insights for 
grid operators and planners.

The comparative analysis of modeled against forecasted PV 
production demonstrates the reliability of predictive approaches 
in assessing voltage within permissible limits, reinforcing the im-
portance of proactive grid management. The findings contribute 
to a more precise estimation of hosting capacity, ensuring efficient 
integration of renewable energy sources without compromising 
network reliability.

(Corresponding author: Maja Muftić Dedović)
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The key contributions of this paper are as follows.

1. The paper provides a quantitative evaluation of PV hosting 
capacity in LV networks while ensuring compliance with op-
erational voltage limits and conductor thermal ratings.

2. An iterative assessment methodology is introduced to deter-
mine the maximum allowable PV penetration under different 
scenarios, offering practical insights for grid operators and 
planners.

3. The research validates the accuracy of predictive models by 
comparing modeled and forecasted PV generation, ensuring 
that voltage levels remain within permissible limits.

4. Realistic daily and seasonal load variations are considered, 
acknowledging their impact on PV integration and network 
performance.

5. The findings highlight the importance of predictive approach-
es in optimizing PV integration, facilitating better planning 
and operational decision-making for LV networks.

This paper is structured as follows. Section II provides a review 
of relevant literature, highlighting existing research on PV integra-
tion in LV networks and identifying key gaps addressed in this re-
search. Section III describes the proposed methodology, including 
network modeling, PV generation characteristics, and the iterative 
assessment approach used for hosting capacity evaluation. Section 
IV presents the implementation of day-ahead PV output predic-
tion using a neural network model, supporting capacity analysis 
under forecasted conditions. Section V discusses the results obtai-
ned from simulations, comparing modeled and forecasted PV pro-
duction and analyzing voltage and conductor constraints. Finally, 
Section VI concludes the paper by summarizing key findings and 
outlining potential directions for future research.

II. LIterature revIew

Recent advancements in integrating prosumers into power 
systems emphasize the critical role of digitalization and advanced 
optimization techniques. Paper [2] explore the strategic behavior 
of prosumers in electricity markets, demonstrating how DER in-
vestments are influenced by market dynamics and proposing regu-
latory measures to align private and public incentives . Also, [3] in-
troduces a decentralized Virtual Aggregation Environment (VAE), 
enabling smart prosumers to collaboratively manage flexibility 
without a central aggregator, highlighting the potential of coope-
rative-competitive algorithms for enhancing grid reliability . In [4] 
is employed multi-agent reinforcement learning (MARL) to opti-
mize peer-to-peer energy trading, showing how dynamic pricing 
mechanisms can improve community self-sufficiency and reduce 
costs while balancing local supply and demand.  

An Internet of Energy (IoE) framework facilitates bidirectional 
energy transactions and integrates DERs into virtual power plants, 
with optimization techniques playing a key role in enhancing grid 
reliability [5]. A stochastic bottom-up model analyzes the effects 
of PV self-consumption on load profiles, emphasizing the need 
for detailed prosumer-level modeling to improve forecasting and 
grid planning [6]. A prosumer-centric peer-to-peer energy trading 
approach addresses network voltage constraints, balancing social 
welfare with economic and technical objectives in energy markets 
[7].

In [8], a hybrid control policy is proposed to address locatio-
nal disparities in voltage regulation and economic arbitrage, en-
hancing grid stability and prosumer benefits. The research in [9] 
focuses on optimizing DER under uncertainty through improved 
risk management in decision-making models. The research in [10] 

examines the impact of distribution tariffs on prosumer demand 
response, highlighting trade-offs between energy costs and distri-
bution expenses. An incentive-based voltage regulation framework 
for unbalanced radial networks is developed in [11], balancing 
prosumer participation and grid needs while reducing operational 
costs. In [12], an innovative energy management system for LV 
networks is presented, utilizing prosumer-based ancillary services 
to manage voltage and reduce congestion.

Challenges such as reverse power flows and voltage fluctu-
ations in LV grids, caused by high penetration of DERs, require 
advanced grid management tools to improve hosting capacities 
and maintain stability [13]. A probabilistic approach for maximi-
zing PV hosting capacity through the coordinated management of 
OLTCs, PV inverters, and EVs demonstrates significant potential 
for enhancing grid performance and stability [14]. 

In [15], Prosumer Energy Management Systems (PEMS) are 
developed to highlight prosumers’ dual role as consumers and 
producers, focusing on advanced communication and optimizati-
on techniques for energy sharing and smart grid operations. The 
research in [16] presents a transactive energy framework using 
coordinated power control and game theory to optimize prosumer 
participation, addressing economic incentives and voltage stability. 
In [17], the financial viability of photovoltaic-battery systems (PV-
BSS) is examined, exploring the role of demand response and ca-
pacity markets, while identifying challenges related to uncertainty 
and limited policy support. Reference [18] analyzes the hosting ca-
pacity of residential grids with high PV penetration and distributed 
storage, demonstrating how advanced management systems and 
coordinated storage utilization mitigate voltage instability and en-
hance capacity. Finally, [19] reassesses voltage variation strategies, 
emphasizing that while effective in certain conditions, traditional 
methods face limitations in achieving substantial energy savings in 
advanced systems. 

Paper [20] explores the role of energy prosumers in sustaina-
ble energy transitions, highlighting the socio-economic and policy 
dimensions of prosumer-driven systems. They underline the need 
for decentralized configurations and innovative business models 
to maximize prosumer contributions to net-zero targets. Research 
in [21] explores energy storage systems (ESS) for active power 
management and voltage regulation, proposing strategies to ma-
intain grid stability while enhancing prosumer benefits. Also, [22] 
addresses challenges such as overvoltage and reverse power flow 
in residential grids with high PV penetration, suggesting scalable 
battery systems and solar radiation forecasting to ensure voltage 
stability and energy quality.

Recent research highlights the need to shift from deterministic 
to stochastic methods for hosting capacity (HC) estimation. De-
terministic approaches, though simpler, often overlook the com-
plexities of variable renewable generation and load uncertainties. 
Stochastic models, such as those in [23], incorporate these uncerta-
inties using advanced optimization techniques, improving accuracy 
and efficiency over traditional methods. Similarly, [24] demonstra-
tes the limitations of deterministic frameworks and validates the 
advantages of stochastic approaches in managing PV penetration. 
Further advancements in HC, as discussed in [25], focus on ESS 
and dynamic hosting capacity (DHC) strategies, which address 
voltage rise and reverse power flow issues while enhancing grid 
reliability through adaptive control and storage integration. 

Previous researches on PV hosting capacity have primarily 
focused on deterministic methods that evaluate network constra-
ints under fixed operating conditions. Unlike these researches, 
this paper presents a comprehensive approach that integrates both 
voltage regulation and conductor thermal constraints while syste-
matically determining the maximum feasible PV penetration using 
an iterative evaluation method. In addition, a comparative analysis 
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between modeled and forecasted PV generation ensures that the 
methodology aligns with real-world operational conditions.

III. MetodoLoGY
This paper explores the effects of integrating PV systems into 

LV distribution networks, emphasizing voltage analysis and con-
ductor capacity evaluation. The proposed methodology provides a 
systematic approach for assessing the feasibility of PV integration 
while maintaining network reliability. In Figure 1, the algorithm is 
presented as a flowchart illustrating the applied approach.

 

Fig. 1. Flowchart of the applied approach.

A. Network DefiNitioN

The geometry of the LV network is characterized by defining 
the number of consumers or prosumers, the length of distribution 
lines, and the type of cables used. The length of the cables and their 
material properties directly influence the resistance and impedan-
ce, which are crucial for calculating voltage variations and power 
losses.

The LV distribution network in this research is modeled with 
a focus on its electrical and geometric characteristics, including 
conductor specifications, supply network parameters, transformer 
details, and load distribution. 

The LV network utilizes XP00-A type conductors with a cross-
sectional area of 4×70 mm2. The electrical characteristics of the-
se conductors include a phase resistance of 0.443 Ω/km, a phase 
reactance of 0.075 Ω/km, a zero-sequence resistance of 1.772 Ω/

km, and a zero-sequence reactance of 0.225 Ω/km. The continuous 
current-carrying capacity of the conductors is 192A. These para-
meters directly influence the impedance of the network and, con-
sequently, the voltage profile and power losses.

The LV network is fed by a medium-voltage (MV) network 
operating at a nominal voltage of 10 kV, with a short-circuit power 
of 250 MVA and an impedance ratio (R/X) of 0.1. The transformer 
linking the MV and LV networks is rated at 160 kVA and operates 
with a primary voltage of 10 kV and a secondary voltage of 0.4 kV. 
Its short-circuit voltage is 4%, and its copper and iron losses are 
2.35 kW and 0.46 kW, respectively. The no-load current is 2.3 A, 
with impedance ratios (Ro/Rt) of 2.0 and (Xo/Xt) of 1.0. 

The LV network’s nominal voltage is 0.4 kV, with a permi-
ssible voltage limit of +5%  (-10%) under normal operation con-
ditions. The network primarily serves residential consumers. The 
diversity factor for a large number of households is set at 0.17, and 
the typical power factor is 0.95. These parameters represent a rea-
listic load profile for residential areas. A total of 10 consumers are 
observed on one segment of the low-voltage distribution (cable).

The network’s design includes evenly distributed nodes along 
the outgoing feeder, with specific distances between them. The dis-
tances between successive nodes vary, including segments of 0.05 
km, 0.025 km, and 0.075 km. These variations reflect the actual 
spatial distribution of connections in residential neighborhoods and 
are crucial for calculation of voltage changes and current flows. 
The cumulative impedance of the network is determined by sum-
ming the impedance contributions of these individual segments. 
This arrangement ensures an accurate representation of real-world 
network conditions, enabling precise modeling and analysis of vol-
tage profiles and conductor utilization.

B. DefiNiNg PV ChArACteristiCs

The production of PV is modeled as a time-dependent func-
tion, P=f(t), which accounts for the variation in solar irradiance 
throughout the day. This function includes factors such as the 
geographical location, orientation of the panels, and meteorolo-
gical conditions, all of which impact the energy output of the PV 
system. A time-series simulation is employed to capture daily and 
seasonal fluctuations in PV generation, ensuring accurate mode-
ling of the system’s behavior. 

In addition to PV generation variability, household electri-
city consumption exhibits daily and seasonal fluctuations, which 
can influence voltage profiles and network constraints. Higher 
electricity demand during peak evening hours or winter months 
may lead to increased voltage drops and higher conductor loa-
ding, potentially affecting the network’s ability to accommo-
date additional PV capacity. Conversely, lower demand during 
midday hours, when PV generation is at its peak, may contribute 
to higher voltage rise, especially in low-load scenarios.

To ensure a realistic assessment of PV hosting capacity, the 
methodology considers representative daily load profiles. Howe-
ver, incorporating stochastic load modeling in future research 
could provide a more detailed evaluation of how dynamic con-
sumption patterns interact with PV generation, allowing for more 
accurate grid planning and adaptive voltage regulation strategies.

The analysis of electricity production from PV systems is 
conducted for installed capacities ranging from 3 kW to 8 kW 
in increments of 1 kW. The simulation is performed using a 
mathematical model that tracks changes in solar radiation inten-
sity throughout the day, taking into account local climatic and 
geographical conditions characteristic of regions with a tempe-
rate climate. Ideal conditions for a clear day are simulated, with 
solar radiation intensity peaking at midday. It is assumed that the 
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strategies, emphasizing that while effective in certain 
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and voltage regulation, proposing strategies to maintain grid 
stability while enhancing prosumer benefits. Also, [22] 
addresses challenges such as overvoltage and reverse power 
flow in residential grids with high PV penetration, suggesting 
scalable battery systems and solar radiation forecasting to 
ensure voltage stability and energy quality. 

Recent research highlights the need to shift from 
deterministic to stochastic methods for hosting capacity (HC) 
estimation. Deterministic approaches, though simpler, often 
overlook the complexities of variable renewable generation and 
load uncertainties. Stochastic models, such as those in [23], 
incorporate these uncertainties using advanced optimization 
techniques, improving accuracy and efficiency over traditional 
methods. Similarly, [24] demonstrates the limitations of 
deterministic frameworks and validates the advantages of 
stochastic approaches in managing PV penetration. Further 
advancements in HC, as discussed in [25], focus on ESS and 
dynamic hosting capacity (DHC) strategies, which address 
voltage rise and reverse power flow issues while enhancing grid 
reliability through adaptive control and storage integration.  

Previous researches on PV hosting capacity have primarily 
focused on deterministic methods that evaluate network 
constraints under fixed operating conditions. Unlike these 
researches, this paper presents a comprehensive approach that 
integrates both voltage regulation and conductor thermal 
constraints while systematically determining the maximum 
feasible PV penetration using an iterative evaluation method. In 
addition, a comparative analysis between modeled and 
forecasted PV generation ensures that the methodology aligns 
with real-world operational conditions. 
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panels are installed on a roof with an optimal orientation. These 
parameters enabled the creation of a daily production profile that 
follows a typical solar radiation curve.

For a PV system with a capacity of 6 kW, the electricity pro-
duction over 24 hours, expressed in kilowatts (kW), is shown in 
Figure 2.b). The production and consumption refer to June 21st, 
the longest day of the year, also known as the summer solstice. 

For higher-capacity systems, such as an 8 kW system, the 
production curve retains a similar daily pattern, but peak valu-
es are proportionally higher. The simulation is carried out under 
standard test conditions with a maximum irradiance of 1000 W/
m² and a panel temperature of 25°C. The production values are 
validated by comparison with reference data from the literature 
and standardized simulations for PV systems in similar climatic 
regions [26,27].

Figure 2. presents the hourly variation of electricity consump-
tion, PV production, and net power demand over a 24-hour for a 
6 kW PV system per consumer.

Fig. 2. a.) Electricity consumption, b.) PV Production, and c.) Net power 
demand over 24 hours for 6 kW.

C. CAlCulAtioN of Power DemAND

For the analysis, household electricity consumption data is cal-
culated over a 24-hour period. The estimated load curve for the 
year 2024, sourced from the official documents of Public Enterpri-
se Electric Utility of Bosnia and Herzegovina [28], is used as the 
basis. This curve is multiplied by the average monthly electricity 
consumption per household in Bosnia and Herzegovina, which 
is approximately 325 kWh (for June) [29]. The average monthly 
consumption is calculated by dividing the annual consumption 
by 12, providing a representative value for analysis. The data is 
calculated hourly, with each entry representing the average power 
consumption in kW during one hour. The collected data reflects 
the dynamics of daily consumption, including variations caused 
by daily activities, the use of household appliances, and external 
factors such as temperature and user habits. The collected data is 
visualized through time series (Figure 2.b)), illustrating changes in 
consumption throughout the day and enabling the identification of 
peak loads and periods of reduced consumption.

The net power demand of households (PD) is determined 
by subtracting the power supplied by PV panels (PPV) from the 
household’s total power requirements (Ptotal). This relationship is 
expressed as:

 PD = Ptotal  - PPV. (1)

where:

PD: The net power demand from the distribution network,

Ptotal: The household’s internal power demand,

PPV: The power generated by the PV system.

Negative values in the calculated power demand (Figure 2.c)) 
and Figure 3.) indicate instances where the PV system produced 
more energy than the household consumption, potentially leading 
to energy export or storage opportunities. This net power demand 
is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system’s operational stability and efficiency under varying load 
conditions.

Fig. 3. Net power demand over a 24-hour for PV production from 3 kW 
to 8 kW.

D. refereNCe VAlues

For all nodes in the network, the following reference values 
are used:

• Nominal Voltage: Uref=400 V, representing the base operating 
voltage of the LV network,

• Power Factor: cosφ = 0.95, reflecting typical power factor val-
ues in residential networks.

These values are essential for ensuring that calculations align 
with the standard operational parameters of the network.

e. VoltAge ANAlysis

An algorithm is implemented to calculate the voltage across 
all network segments. The algorithm iteratively evaluates whether 
the voltage at each node remains within +5% (-10%) of the refe-
rence voltage (Uref). Voltage drops exceeding this range indicate 
that corrective measures, such as upgrading cables or redistributing 
loads, are necessary.

The voltage drop (ΔU) along a segment is calculated using the 
following formula:

ΔU = I⋅Z. (2)

where:

I: The current through the segment,

Z: The impedance of the cable.

Impedance is determined based on the cable’s length, cross-
sectional area, and material properties.

The mathematical model is presented through the following 
expressions, which define the power flow calculations in the 
network based on fundamental electrical relationships.

The reactive power at node i is calculated based on the active 
power and power factor using the following equation: 
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2.35 kW and 0.46 kW, respectively. The no-load current is 2.3 A, 
with impedance ratios (Ro/Rt) of 2.0 and (Xo/Xt) of 1.0.  

The LV network's nominal voltage is 0.4 kV, with a permissible 
voltage limit of +5%  (-10%) under normal operation conditions. 
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typical power factor is 0.95. These parameters represent a realistic 
load profile for residential areas. A total of 10 consumers are 
observed on one segment of the low-voltage distribution (cable). 
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neighborhoods and are crucial for calculation of voltage changes 
and current flows. The cumulative impedance of the network is 
determined by summing the impedance contributions of these 
individual segments. This arrangement ensures an accurate 
representation of real-world network conditions, enabling precise 
modeling and analysis of voltage profiles and conductor 
utilization. 

B. Defining PV Characteristics 
The production of PV is modeled as a time-dependent function, 

P=f(t), which accounts for the variation in solar irradiance 
throughout the day. This function includes factors such as the 
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consumption patterns interact with PV generation, allowing for 
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follows a typical solar radiation curve. 
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test conditions with a maximum irradiance of 1000 W/m² and a 
panel temperature of 25°C. The production values are validated by 
comparison with reference data from the literature and 
standardized simulations for PV systems in similar climatic regions 
[26,27]. 

Figure 2. presents the hourly variation of electricity 
consumption, PV production, and net power demand over a 24-
hour for a 6 kW PV system per consumer. 
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calculated over a 24-hour period. The estimated load curve for the 
year 2024, sourced from the official documents of Public 
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as the basis. This curve is multiplied by the average monthly 
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consumption by 12, providing a representative value for analysis. 
The data is calculated hourly, with each entry representing the 
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data reflects the dynamics of daily consumption, including 
variations caused by daily activities, the use of household 
appliances, and external factors such as temperature and user 
habits. The collected data is visualized through time series (Figure 
2.b)), illustrating changes in consumption throughout the day and 
enabling the identification of peak loads and periods of reduced 
consumption. 

The net power demand of households (PD) is determined by 
subtracting the power supplied by PV panels (PPV) from the 
household's total power requirements (Ptotal). This relationship is 
expressed as: 
 PD = Ptotal  - PPV. (1) 
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PD: The net power demand from the distribution network, 
Ptotal: The household’s internal power demand, 
PPV: The power generated by the PV system. 
Negative values in the calculated power demand (Figure 2.c)) 

and Figure 3.) indicate instances where the PV system produced 
more energy than the household consumption, potentially leading 
to energy export or storage opportunities. This net power demand 
is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system's operational stability and efficiency under varying load 
conditions. 

 
Fig. 3. Net power demand over a 24-hour for PV production 

from 3 kW to 8 kW. 

D. Reference Values 
For all nodes in the network, the following reference values are 

used: 
• Nominal Voltage: Uref=400 V, representing the base 

operating voltage of the LV network, 
• Power Factor: cosφ = 0.95, reflecting typical power 

factor values in residential networks. 
These values are essential for ensuring that calculations align 

with the standard operational parameters of the network. 

E. Voltage Analysis 
An algorithm is implemented to calculate the voltage across all 

network segments. The algorithm iteratively evaluates whether the 
voltage at each node remains within +5% (-10%) of the reference 
voltage (Uref). Voltage drops exceeding this range indicate that 
corrective measures, such as upgrading cables or redistributing 
loads, are necessary. 

The voltage drop (ΔU) along a segment is calculated using the 
following formula: 

ΔU = I⋅Z. (2) 
where: 
I: The current through the segment, 
Z: The impedance of the cable. 
Impedance is determined based on the cable's length, cross-

sectional area, and material properties. 
The mathematical model is presented through the following 

expressions, which define the power flow calculations in the 
network based on fundamental electrical relationships. 

The reactive power at node i is calculated based on the active 
power and power factor using the following equation:  

 
Q(i) = P(i) ⋅ tan(φ)    (3) 

 
where: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑: Power factor at the given node. 
P(i): The active power at the given node. 
Q(i): The reactive power at the given node. 
 
To determine the voltage drop, the total active and reactive 

power at node i must be define as the sum of all preceding nodes 
in the network: 

 
Ptotal(i) =  ∑ P(j)n

j=1        (4) 
Qtotal(i) =  ∑ Q(j)n

j=1             (5) 
 

The overall phase angle of the system is determined using the 
ratio of total reactive power to total active power: 

 
tanφtotal(i) = Qtotal(i)

Ptotal(i)
      (6) 

where: 
𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖𝑖𝑖): Total active power at node i. 
𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖𝑖𝑖): Total reactive power at node i. 
𝜑𝜑𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖𝑖𝑖): Total phase angle at node i. 
𝑃𝑃𝑃𝑃(𝑗𝑗𝑗𝑗): Active power at node j. 
𝑃𝑃𝑃𝑃(𝑗𝑗𝑗𝑗): Reactive power at node j. 
n: Total number of nodes in the network. 
 
The calculation of cable impedance includes the series 

resistance R and reactance X, considering the total phase angle. 
Effective impedance of the cable directly influences the voltage 
drop in the network:   
  

Zaux = R + X ⋅ tanφtotal(i)        (7) 
 
The voltage drop along the cable is determined using the 

following equation:  
 

∆U =  1000⋅Ptotal(i)⋅L(i)⋅Zaux
U(i−1)2

                 (8) 
 

where: 
𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖𝑖𝑖): Total active power at node i. 
𝐿𝐿𝐿𝐿(𝑖𝑖𝑖𝑖): Length of the cable between nodes i-1 and i. 
𝑈𝑈𝑈𝑈(𝑖𝑖𝑖𝑖 𝑖 1): The voltage at the previous node. 
 
The implemented algorithm is illustrated in the following figure, 

which provides an overview of the steps for calculating voltage 
drops using MATLAB software [30]. The algorithm iterates over 
24 hours, taking into account active and reactive power at each 
node, total power calculations, and the resulting voltage drop at 
each segment. 
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    (3)

where:

cos : Power factor at the given node.

P(i): The active power at the given node.

Q(i): The reactive power at the given node.

To determine the voltage drop, the total active and reactive 
power at node i must be define as the sum of all preceding nodes 
in the network:

       (4)

            (5)

The overall phase angle of the system is determined using the 
ratio of total reactive power to total active power:

      (6)

where:

P total: Total active power at node i.

Q total: Total reactive power at node i.

  total :Total phase angle at node i.

P(j): Active power at node j.

P(j):Reactive power at node j.

n: Total number of nodes in the network.

The calculation of cable impedance includes the series resi-
stance R and reactance X, considering the total phase angle. Effec-
tive impedance of the cable directly influences the voltage drop in 
the network:  

 

        (7)

The voltage drop along the cable is determined using the 
following equation: 

                 (8)

where:

P total: Total active power at node i.

L(i): Length of the cable between nodes i-1 and i.

U(i-1): The voltage at the previous node.

The implemented algorithm is illustrated in the following 
figure, which provides an overview of the steps for calculating 
voltage drops using MATLAB software [30]. The algorithm ite-
rates over 24 hours, taking into account active and reactive power 
at each node, total power calculations, and the resulting voltage 
drop at each segment.

f. CoNDuCtor CAPACity VerifiCAtioN

The current flowing through each network segment is evalu-
ated to ensure it does not exceed the continuous current-carrying 
capacity (Ith) of the cable. For this study, the threshold is set to 
Ith=192 A.

The verification process involves:
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PD: The net power demand from the distribution network, 
Ptotal: The household’s internal power demand, 
PPV: The power generated by the PV system. 
Negative values in the calculated power demand (Figure 2.c)) 

and Figure 3.) indicate instances where the PV system produced 
more energy than the household consumption, potentially leading 
to energy export or storage opportunities. This net power demand 
is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system's operational stability and efficiency under varying load 
conditions. 

 
Fig. 3. Net power demand over a 24-hour for PV production 
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An algorithm is implemented to calculate the voltage across all 

network segments. The algorithm iteratively evaluates whether the 
voltage at each node remains within +5% (-10%) of the reference 
voltage (Uref). Voltage drops exceeding this range indicate that 
corrective measures, such as upgrading cables or redistributing 
loads, are necessary. 

The voltage drop (ΔU) along a segment is calculated using the 
following formula: 

ΔU = I⋅Z. (2) 
where: 
I: The current through the segment, 
Z: The impedance of the cable. 
Impedance is determined based on the cable's length, cross-

sectional area, and material properties. 
The mathematical model is presented through the following 

expressions, which define the power flow calculations in the 
network based on fundamental electrical relationships. 

The reactive power at node i is calculated based on the active 
power and power factor using the following equation:  

 
Q(i) = P(i) ⋅ tan(φ)    (3) 

 
where: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑: Power factor at the given node. 
P(i): The active power at the given node. 
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To determine the voltage drop, the total active and reactive 

power at node i must be define as the sum of all preceding nodes 
in the network: 

 
Ptotal(i) =  ∑ P(j)n

j=1        (4) 
Qtotal(i) =  ∑ Q(j)n

j=1             (5) 
 

The overall phase angle of the system is determined using the 
ratio of total reactive power to total active power: 

 
tanφtotal(i) = Qtotal(i)

Ptotal(i)
      (6) 

where: 
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𝑃𝑃𝑃𝑃(𝑗𝑗𝑗𝑗): Active power at node j. 
𝑃𝑃𝑃𝑃(𝑗𝑗𝑗𝑗): Reactive power at node j. 
n: Total number of nodes in the network. 
 
The calculation of cable impedance includes the series 

resistance R and reactance X, considering the total phase angle. 
Effective impedance of the cable directly influences the voltage 
drop in the network:   
  

Zaux = R + X ⋅ tanφtotal(i)        (7) 
 
The voltage drop along the cable is determined using the 

following equation:  
 

∆U =  1000⋅Ptotal(i)⋅L(i)⋅Zaux
U(i−1)2

                 (8) 
 

where: 
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𝐿𝐿𝐿𝐿(𝑖𝑖𝑖𝑖): Length of the cable between nodes i-1 and i. 
𝑈𝑈𝑈𝑈(𝑖𝑖𝑖𝑖 𝑖 1): The voltage at the previous node. 
 
The implemented algorithm is illustrated in the following figure, 

which provides an overview of the steps for calculating voltage 
drops using MATLAB software [30]. The algorithm iterates over 
24 hours, taking into account active and reactive power at each 
node, total power calculations, and the resulting voltage drop at 
each segment. 
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PD: The net power demand from the distribution network, 
Ptotal: The household’s internal power demand, 
PPV: The power generated by the PV system. 
Negative values in the calculated power demand (Figure 2.c)) 

and Figure 3.) indicate instances where the PV system produced 
more energy than the household consumption, potentially leading 
to energy export or storage opportunities. This net power demand 
is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system's operational stability and efficiency under varying load 
conditions. 

 
Fig. 3. Net power demand over a 24-hour for PV production 

from 3 kW to 8 kW. 

D. Reference Values 
For all nodes in the network, the following reference values are 

used: 
• Nominal Voltage: Uref=400 V, representing the base 

operating voltage of the LV network, 
• Power Factor: cosφ = 0.95, reflecting typical power 
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These values are essential for ensuring that calculations align 

with the standard operational parameters of the network. 

E. Voltage Analysis 
An algorithm is implemented to calculate the voltage across all 

network segments. The algorithm iteratively evaluates whether the 
voltage at each node remains within +5% (-10%) of the reference 
voltage (Uref). Voltage drops exceeding this range indicate that 
corrective measures, such as upgrading cables or redistributing 
loads, are necessary. 

The voltage drop (ΔU) along a segment is calculated using the 
following formula: 

ΔU = I⋅Z. (2) 
where: 
I: The current through the segment, 
Z: The impedance of the cable. 
Impedance is determined based on the cable's length, cross-

sectional area, and material properties. 
The mathematical model is presented through the following 

expressions, which define the power flow calculations in the 
network based on fundamental electrical relationships. 

The reactive power at node i is calculated based on the active 
power and power factor using the following equation:  

 
Q(i) = P(i) ⋅ tan(φ)    (3) 

 
where: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑: Power factor at the given node. 
P(i): The active power at the given node. 
Q(i): The reactive power at the given node. 
 
To determine the voltage drop, the total active and reactive 

power at node i must be define as the sum of all preceding nodes 
in the network: 

 
Ptotal(i) =  ∑ P(j)n

j=1        (4) 
Qtotal(i) =  ∑ Q(j)n

j=1             (5) 
 

The overall phase angle of the system is determined using the 
ratio of total reactive power to total active power: 

 
tanφtotal(i) = Qtotal(i)

Ptotal(i)
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where: 
𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖𝑖𝑖): Total active power at node i. 
𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖𝑖𝑖): Total reactive power at node i. 
𝜑𝜑𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖𝑖𝑖): Total phase angle at node i. 
𝑃𝑃𝑃𝑃(𝑗𝑗𝑗𝑗): Active power at node j. 
𝑃𝑃𝑃𝑃(𝑗𝑗𝑗𝑗): Reactive power at node j. 
n: Total number of nodes in the network. 
 
The calculation of cable impedance includes the series 

resistance R and reactance X, considering the total phase angle. 
Effective impedance of the cable directly influences the voltage 
drop in the network:   
  

Zaux = R + X ⋅ tanφtotal(i)        (7) 
 
The voltage drop along the cable is determined using the 

following equation:  
 

∆U =  1000⋅Ptotal(i)⋅L(i)⋅Zaux
U(i−1)2

                 (8) 
 

where: 
𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖𝑖𝑖): Total active power at node i. 
𝐿𝐿𝐿𝐿(𝑖𝑖𝑖𝑖): Length of the cable between nodes i-1 and i. 
𝑈𝑈𝑈𝑈(𝑖𝑖𝑖𝑖 𝑖 1): The voltage at the previous node. 
 
The implemented algorithm is illustrated in the following figure, 

which provides an overview of the steps for calculating voltage 
drops using MATLAB software [30]. The algorithm iterates over 
24 hours, taking into account active and reactive power at each 
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I: The current through the segment, 
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The mathematical model is presented through the following 

expressions, which define the power flow calculations in the 
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The reactive power at node i is calculated based on the active 
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The implemented algorithm is illustrated in the following figure, 

which provides an overview of the steps for calculating voltage 
drops using MATLAB software [30]. The algorithm iterates over 
24 hours, taking into account active and reactive power at each 
node, total power calculations, and the resulting voltage drop at 
each segment. 
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F. Conductor Capacity Verification 

The current flowing through each network segment is evaluated 
to ensure it does not exceed the continuous current-carrying 
capacity (Ith) of the cable. For this study, the threshold is set to 
Ith=192 A. 

The verification process involves: 

1) Determining Cable Specifications: Cable specifications, 
including the permissible current-carrying capacity under 
steady-state conditions, are obtained from manufacturer 
data or relevant standards. Factors such as ambient 
temperature, installation method, and cable insulation are 
considered. 

2) Calculating Current Flow: The current through each 
segment is calculated as:  

I = P/(√3 ⋅ V ⋅  cosφ). (9) 
where:  
P: Power flow through the segment, 
U: Voltage level, 
cosφ: Power factor. 

3) Comparison with Capacity: The calculated current is 
compared to Ith. If I>Ith, the cable is insufficient, and 
recommendations for upgrading are provided. 

This verification ensures the thermal safety of the conductors 
and prevents overloading, which could lead to insulation failure or 
fire hazards. 

G. Iterative Optimization Process 
An iterative process is applied to optimize the integration of PV. 

If both voltage and current limits are within acceptable ranges, the 
installed PV capacity is incrementally increased by 1 kW from 3 to 
8 kW. This process continues until one or more constraints are 
violated, marking the maximum permissible PV capacity for the 
network. If constraints are exceeded at the initial stage, the analysis 
concludes with recommendations for network reinforcement or 
alternative strategies. 

The iterative optimization process determines the maximum PV 
capacity that the network can accommodate while ensuring voltage 
and current constraints are not violated. The process follows an 
incremental approach where the PV capacity is increased in steps 
of ΔP=1 kW, starting from the initial production PPV,initial. The 
updated PV production at each iteration is given by: 

 
PPV,new =  PPV,prev + ∆𝑃𝑃𝑃𝑃             (10) 

 
At each step, the voltage and current limits are checked: 
 

Umax(i) < U𝑡𝑡𝑡𝑡𝑡,   Imax(i) < Ith                 (11) 
 
where Uth and Ith represent the permissible voltage and current 

limits, respectively. If these conditions are met, the iteration 
continues with an increased PV production. If one or both 
constraints are exceeded, the process terminates, identifying the 
maximum allowable PV production for the given network 
configuration. 

IV. DAY-AHEAD PV OUTPUT PREDICTION AND CAPACITY 
ANALYSIS USING NEURAL NETWORKS 

In this section of the paper, a scientific approach is taken to 
predict day-ahead PV power output and voltage variations on LV 
networks, as well as to conduct capacity analysis based on PV 
production data available for the forecasted day. The integration of 
PV systems into power networks plays a critical role in 
transitioning towards sustainable energy systems [31]. Accurate 

Maja Muftić Dedović, Samir Avdaković, Adin Memić, PV Integration in LV Networks and Capacity Analysis, Journal of Energy, vol. 73 Number 4 (2024), 3–11 
https://doi.org/10.37798/2024734698    
© 2023 Copyright for this paper by authors. Use permitted under Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License



8

1. Determining Cable Specifications: Cable specifications, 
including the permissible current-carrying capacity under 
steady-state conditions, are obtained from manufacturer data 
or relevant standards. Factors such as ambient temperature, 
installation method, and cable insulation are considered.

2. Calculating Current Flow: The current through each segment 
is calculated as:  

 

where:  
P: Power flow through the segment, 
U: Voltage level, 
cosφ: Power factor.

3. Comparison with Capacity: The calculated current is com-
pared to Ith. If I>Ith, the cable is insufficient, and recommen-
dations for upgrading are provided.

This verification ensures the thermal safety of the conductors 
and prevents overloading, which could lead to insulation failure or 
fire hazards.

g. iterAtiVe oPtimizAtioN ProCess

An iterative process is applied to optimize the integration of 
PV. If both voltage and current limits are within acceptable ranges, 
the installed PV capacity is incrementally increased by 1 kW from 
3 to 8 kW. This process continues until one or more constraints are 
violated, marking the maximum permissible PV capacity for the 
network. If constraints are exceeded at the initial stage, the analysis 
concludes with recommendations for network reinforcement or al-
ternative strategies.

The iterative optimization process determines the maximum 
PV capacity that the network can accommodate while ensuring 
voltage and current constraints are not violated. The process 
follows an incremental approach where the PV capacity is increa-
sed in steps of ΔP=1 kW, starting from the initial production PPV,initial 
. The updated PV production at each iteration is given by:

             (10)

At each step, the voltage and current limits are checked:

                (11)

 where Uth  and Ith  represent the permissible voltage and current 
limits, respectively. If these conditions are met, the iteration con-
tinues with an increased PV production. If one or both constraints 
are exceeded, the process terminates, identifying the maximum 
allowable PV production for the given network configuration.

Iv. daY-ahead Pv outPut PredIctIon and 
caPacItY anaLYsIs usInG neuraL networks

In this section of the paper, a scientific approach is taken to 
predict day-ahead PV power output and voltage variations on LV 
networks, as well as to conduct capacity analysis based on PV 
production data available for the forecasted day. The integrati-
on of PV systems into power networks plays a critical role in 
transitioning towards sustainable energy systems [31]. Accurate 

predictions of PV output are essential for optimizing the opera-
tion and planning of energy systems, ensuring grid stability, and 
maximizing the utilization of renewable energy sources, as de-
monstrated in [32]

The predictive model for PV output utilizes a feedforward 
neural network (FNN), which is selected for its computational 
efficiency and ability to capture non-linear relationships between 
input variables. The model is trained using historical data of PV 
production and meteorological variables, including solar irradi-
ance, temperature, and cloud cover. These variables are chosen 
because of their significant impact on PV system performance. 
The prediction system is developed for six PV systems with no-
minal capacities ranging from 3 kW to 8 kW.

The neural network architecture includes a single hidden 
layer with 10 neurons to balance complexity and computational 
cost. A non-linear activation function, such as sigmoid, is appli-
ed in the hidden layer to model complex interactions between 
inputs, while the output layer employs a linear activation func-
tion to produce continuous predictions of PV power output. The 
Levenberg-Marquardt backpropagation algorithm, a robust op-
timization method, is used for training. The training process is 
conducted in MATLAB [30] using the built-in train function.

The input dataset for the neural network consisted of 24 
hourly values of PV production for each system, representing 
typical operational data for one day. Additionally, three key me-
teorological variables are included: solar irradiance, temperature, 
and cloud cover. Solar irradiance, measured in watts per square 
meter (W/m²), represents the amount of solar energy available to 
the PV, with values ranging from 0 (night) to 1000 W/m² (peak 
sunlight). Ambient temperature, measured in degrees Celsius 
(°C), affects panel efficiency and ranged from 5°C in the early 
morning to 32°C in the afternoon. Cloud cover, expressed as a 
percentage, is used to estimate the impact of cloudiness on solar 
availability, with values ranging from 0% (clear skies) to 100% 
(fully overcast).

To ensure efficient training and prevent biases caused by scale 
differences among the input variables, all meteorological inputs 
are normalized to a range of [0, 1]. 

The input data matrix X is constructed by combining the hour 
of the day (1 to 24), normalized solar irradiance, normalized tem-
perature, and normalized cloud cover. The target output matrix 
Y consisted of historical PV production values for each system.

The neural network is trained using this dataset, with the loss 
function defined as the mean squared error (MSE) between pre-
dicted and actual outputs. The training process iterated for up to 
100 epochs or until the model achieved convergence, defined as 
the minimization of MSE to a predefined threshold.

After training, the model generated day-ahead predictions for 
each PV system using the same meteorological conditions. The-
se predictions are then utilized for additional analyses, including 
voltage drop simulations on low-voltage networks and capacity 
assessments of the PV systems under forecasted conditions.

 v. resuLts and dIscussIon

The proposed methodology is tested on an LV distribution 
network model. The results demonstrated that:

1. Voltage remained within +5% (-10%) of the nominal voltage 
for most scenarios.

2. Current levels are below the continuous current-carrying ca-
pacity of the cables, ensuring thermal safety.
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3. Incremental increases in PV capacity allowed for a gradual 
understanding of the network’s limitations.

The results obtained by applying the approach explained in 
Section III are presented for two cases. The first case utilizes mo-
deled PV production data. 

The second case considers forecasted PV production one day 
ahead, as described in Section IV. Figure 4. illustrates the results 
for the first case, while Table 1. presents the outcomes for the se-
cond case, highlighting the relationship between PV production 
and voltage levels (U) across various scenarios.

Fig. 4. Relationship between PV production and voltage levels (U) across 
various scenarios.

tabLe I

coMParIson of voLtaGe (%) for ModeLed and forecasted 
Pv ProductIon at dIfferent Power LeveLs

PV Production 
(kW)

Modelled Voltage 
(%)

Forecasted 
Voltage (%)

Difference (%)

3 2.11 2.03 0.08
4 2.87 2.92 0.05
5 3.62 3.74 0.12
6 4.37 3.97 0.4
7 5.11 5.25 0.14
8 5.85 5.79 0.06

From the approach provided in section III, it is evident that the 
voltage levels across the network are significantly influenced by the 
size of the PV systems, ranging from 3 kW to 8 kW. The voltage 
levels tend to increase slightly with higher installed PV capacities 
due to the reverse power flow in scenarios where local generation 
exceeds demand. For instance, at a PV size of 3 kW, the observed 
voltage levels are predominantly between 400 V and 405 V, while 
for larger systems like 8 kW, voltage levels range between 415 V 
and 420 V. This increase demonstrates that higher PV capacities 
inject more power into the network, improving voltage profiles but 
also necessitating careful voltage regulation to avoid overvoltage 
issues. Crucially, the voltage values for all PV capacities remain 
within the permissible range of +5% of -10 % of the nominal vol-
tage (400 V), confirming that the LV network is capable of integra-
ting these capacities without breaching operational voltage limits.

The voltage along the network is calculated for a cable len-
gth of 500 meters. This length contributes to increased impedance, 
amplifying voltage variations under higher loads, especially du-
ring peak consumption periods. Despite this, the results indicate 
that the network generally maintains adequate voltage under most 
conditions. For instance, at a 3 kW PV production level, voltage 
variations remain minimal, with average below 2 V, demonstrating 
a well-balanced network response. However, at higher capaciti-
es, such as 8 kW, maintaining acceptable voltage levels becomes 

more challenging. While the average voltage drop across nodes is 
approximately 8.5 V, there are instances where the maximum vol-
tage drop exceeds the critical threshold of 20 V. This highlights 
a potential risk of exceeding acceptable voltage levels at higher 
levels of distributed generation, particularly under certain load and 
generation configurations.

The variation in voltage across the network depends on the in-
stalled PV production, with higher capacities leading to increased 
voltage fluctuations. Table II presents the voltage observed in the 
network for different PV production levels.

tabLe II

voLtaGe In the network for dIfferent Pv ProductIon

PV Production (kW) Voltage (V)

3 408.44
4 411.48
5 414.49
6 417.48
7 420.46
8 423.42

To address these challenges and ensure reliable network opera-
tion, especially in scenarios with higher PV penetration, optimiza-
tion measures are essential. The integration of ESS, such as batte-
ries, could help mitigate voltage fluctuations by absorbing excess 
generation during peak production and releasing energy during 
periods of high demand. Additionally, network interconnectivity 
and reinforcement, including meshing LV networks or upgrading 
conductor capacities, could reduce impedance and stabilize volta-
ge profiles.

Furthermore, the implementation of advanced digital solutions, 
such as real-time monitoring and control systems, would enable 
timely detection of voltage deviations and facilitate rapid correcti-
ve actions. Digitalizing the management of distributed generation 
through smart inverters and automated demand response could 
dynamically adjust generation and consumption patterns to main-
tain voltage within acceptable limits.

These strategies emphasize the importance of a proactive 
approach to grid management, particularly as PV penetration con-
tinues to increase. A combination of optimization, ESS, network 
upgrades, and digitalization will ensure that acceptable voltage le-
vels are maintained, even under demanding conditions. Such me-
asures are critical for transitioning toward a resilient, sustainable, 
and future-ready power distribution system.

As PV sizes increase, voltage at the nodes gradually rises, par-
ticularly during periods of high solar irradiance, as power is injec-
ted into the network. This phenomenon is most evident for systems 
between 6 kW and 8 kW, where voltage levels at distant nodes are 
observed to peak around 420 V, compared to closer nodes which 
maintain voltages near 410 V. Hourly data trends further valida-
te these findings, showing a stable voltage profile across multiple 
days. During peak production hours, typically midday, the voltage 
increases across the network are more uniform, whereas during 
early morning or evening hours, when PV generation is lower, the 
network operates closer to its base voltage of 400 V.

The results also indicate that the observed current values re-
main consistently below the maximum permissible limit of 192 
A for XP00-A conductors. At peak conditions with an 8 kW PV 
system, the maximum current observed is approximately 120 A, 
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providing sufficient headroom for safe operation. Similarly, for 
lower capacities such as 3 kW, current levels are typically below 
50 A, highlighting the efficiency of the network under partial loa-
ding conditions. Table III presents the maximum observed current 
for different PV production, ensuring that all values remain below 
the permissible thermal limit of 192 A.

tabLe III

MaxIMuM current In conductors for dIfferent Pv 
ProductIon

PV Production (kW) Max. Current (A)

3 41.83
4 57.43
5 72.34
6 87.47
7 102.39
8 117.44

Lastly, the analysis of integration capacity demonstrates that 
incremental increases in PV capacities, from 3 kW to 8 kW, allow 
the network to integrate distributed generation effectively while 
maintaining reliability. However, further increases in PV capacity 
beyond 8 kW may necessitate network reinforcements, such as 
upgrading conductor cross-sectional areas or transformer capaciti-
es, to ensure continued compliance with voltage and current limits. 

These results from Table 1. demonstrate that the forecasted vol-
tage closely align with the modeled values, with variations remai-
ning within acceptable ranges. However, at higher PV production 
levels, the voltage drops approach critical thresholds (20 V and 
above), indicating a potential risk of exceeding acceptable voltage 
limits.

For a PV production of 3 kW, the modeled voltage drop corres-
ponds to 8.44 V, while the forecasted drop is 8.12 V, with a negli-
gible difference of 0.32 V. At 4 kW, the modeled drop increases to 
11.48 V, and the forecasted value closely aligns at 11.68 V, resul-
ting in a minor difference of 0.20 V. Similarly, at 5 kW, the mode-
led drop is 14.48 V, compared to the forecasted value of 14.96 V, 
with a difference of 0.48 V.

As the power level increases to 6 kW, the modeled voltage drop 
is 17.48 V, while the forecasted value is slightly lower at 15.88 V, 
resulting in a larger difference of 1.60 V. For 7 kW, the modeled 
and forecasted drops are 20.44 V and 21.00 V, respectively, with 
a difference of 0.56 V. Finally, at 8 kW, the modeled voltage drop 
is 23.40 V, and the forecasted value is nearly identical at 23.16 V, 
showing an excellent match with a minor difference of 0.24 V.

This underscores the importance of implementing measures 
such as energy storage, enhanced grid interconnectivity, and real-
time monitoring to mitigate the impact of high PV penetration on 
maintaining acceptable voltage levels in the network.

The transformer under consideration has a nominal capacity of 
160 kVA, equivalent to approximately 152 kW at a power factor of 
0.95, typically feeding a LV network with four outgoing feeders. 
This analysis focuses on one feeder with 10 connections, where 
individual loads range from 3 kW to 8 kW, corresponding to feeder 
loads between 30 kW and 80 kW. This load represents approxima-
tely 19.7% to 52.6% of the transformer’s total capacity, which is 
within operational limits, provided the total load across all feeders 
does not exceed 152 kW. Assuming equal distribution, the nominal 
load per feeder would be 38 kW, however, one feeder with a load 
of up to 80 kW would require reduced loads on the remaining fee-

ders to prevent overloading. Voltage regulation, with a short-circuit 
voltage of 4%, remains adequate, but high feeder loads, especially 
with long cable lengths, could result in critical voltage variations. 
At a power factor of 0.95, the current for an 80 kW load reaches 
approximately 121 A, requiring careful impedance considerations 
to maintain voltage compliance within the allowable +5% (-10%) 
range of 400 V. While copper losses of 2.35 kW and iron losses of 
0.46 kW indicate efficient operation under nominal conditions, su-
stained operation near maximum capacity could increase thermal 
stress, necessitating adequate cooling and monitoring to prevent 
insulation degradation. Proper load management and redistributi-
on, along with voltage analysis and future scalability considerati-
ons, are essential, particularly if additional PV generation or higher 
loads are integrated. Incorporating reactive power compensation, 
monitoring, and automation can enhance operational reliability 
and prevent system overload.

The proposed methodology provides insights for grid operators 
in determining the maximum permissible PV hosting capacity in 
LV networks. However, its implementation in real-world scena-
rios requires considerations related to cost and complexity. The 
computational approach used in this paper, based on voltage and 
conductor capacity verification, can be integrated into existing dis-
tribution network planning tools to support decision-making pro-
cesses. While the methodology itself is straightforward, its practi-
cal application may involve additional investments in monitoring 
infrastructure and advanced control systems to manage higher PV 
penetration levels effectively. Regulatory support and incentive 
structures may be required to encourage grid operators to adopt 
such analytical approaches in routine operations.

In real-world applications, PV generation is influenced by fac-
tors such as cloud cover, shading, panel aging, and seasonal varia-
tions, leading to deviations from expected production levels. These 
fluctuations can impact voltage profiles and the overall capacity 
of PV systems to offset household consumption. Lower-than-
expected PV output may reduce the extent of voltage rise but can 
also limit the benefits of distributed generation in reducing grid 
dependence.

To account for these uncertainties, future research should 
explore probabilistic modeling approaches that incorporate varia-
bility in solar irradiance and load fluctuations. Integrating real-time 
monitoring and adaptive control mechanisms could help mitigate 
the effects of variable PV output, enhancing overall system stabi-
lity and efficiency.

vI. concLusIon

This research analyzed the integration of PV systems into LV 
networks, focusing on voltage and conductor capacity. Using a 
systematic approach, the study demonstrated that PV capacities up 
to 8 kW could be integrated effectively while maintaining voltage 
levels within the permissible range (+5%, -10% of 400 V) and en-
suring that conductor currents remain below thermal limits.

Key findings indicate that:

1. The tested conditions maintain acceptable voltage variations 
in the LV network, even at higher levels of PV penetration. 
However, the approach highlights the risk of overvoltage is-
sues in scenarios of peak solar irradiance, particularly for sys-
tems exceeding 8 kW capacity.

2. Forecasted PV production values, obtained through neural 
network-based predictions, closely align with modeled data, 
showcasing the reliability and accuracy of the predictive 
model.

To address potential challenges in scenarios with increased PV 
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penetration, the following recommendations are proposed:

• Incorporation of ESS to absorb excess energy during peak 
production and release it during periods of high demand, miti-
gating voltage fluctuations.

• Network upgrades such as increasing conductor cross-sec-
tional areas or upgrading transformers, are critical to support 
higher PV capacities.

• Implementing real-time monitoring and control systems, in-
cluding smart inverters and automated demand response, will 
enhance the dynamic management of voltage and current 
levels.

• Policymakers and grid operators should adopt iterative and 
predictive methodologies for network design, ensuring long-
term scalability and reliability.

By adopting these strategies, LV networks can support the tran-
sition to renewable energy systems while maintaining operational 
efficiency and stability. Future research should explore dynamic 
hosting capacity models and integrate stochastic methods to better 
account for uncertainties in load and generation patterns. This will 
further enhance the adaptability and resilience of power distribu-
tion systems in the face of growing renewable energy integration.
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Diesel Engine Performance and Emission Properties 
using Kariya Biodiesel

Oluwafemi Emmanuel Ogundahunsi

Summary — This study evaluated diesel engine performance and 
emission properties when fuelled with an already-produced kariya oil 
biodiesel (KOB) and KOB blends. This intends to explore KOB blen-
ds as a supplement in diesel engines. A hand-held exhaust gas analyzer 
was used to determine the gas emitted. In contrast, the brake power 
and exhaust gas temperature were determined using a Schenck W230 
Eddy Current dynamometer and a thermometer respectively during 
the operation of the diesel engine fuelled with KOB. In contrast with 
standard petroleum-based diesel, the findings show that using KOB 
in diesel engines reduces CO and HC but increases NOx emitted due 
to its oxygenating property that aids fuel combustion. Also, with an 
increase in biodiesel blends, the fuel consumption increased, while the 
brake power and exhaust gas temperature decreased due to lower ca-
lorific value, higher viscosity, higher volumetric fuel per engine stro-
ke, and the oxygen content dominating over lower calorific value for 
better combustion. From the study, both KOB B10 and B30 blends 
were considered optimally appropriate fuel supplements in a diesel 
engine. This study presents a proper way to manage the waste from 
kariya tree using it as a feedstock for biofuel production and diver-
sifying different seeds through which biofuel can be produced. 

Keywords — Biofuel, trans-esterification, bio-catalyst, exhaust ga-
ses, engines, emission properties

I. IntroductIon

Biodiesel is produced via transesterification of vegetable oil 
or animal fat mixed with alcohol and a catalyst. Studies 
show that vegetable oil is a potential fuel in diesel engi-

nes due to its simple production process, ecologically friendliness, 
and similar physiochemical properties to petroleum-based diesel. 
However, it affects the durability of a diesel engine negatively when 
used directly. This is due to its high viscosity which thickens its oil 
lubricant and increases fuel droplets in the engine cylinder thereby 
leading to partial fuel combustion, excessive carbon build-up, and 
blockage of the combustion chamber [1]-[3]. To provide solutions 
to these challenges, some diesel engines were improved to heat the 
oil before its injection to enhance its atomization in the combustion 
chamber. Also, different research on the use of oil mixed with pe-
troleum-based diesel as a supplementary fuel in diesel engines has 
been carried out. However, this blend only reduces the challenges 

but never eradicate them which make transesterification of vegeta-
ble oil needed before blending it with petroleum-diesel. Biodiesel 
produced through this process is then mixed with petroleum-based 
diesel to enhance its use in a diesel engine and to conform to the 
ASTM quality standard.

It is important to note that the use of edible oil seeds in biodi-
esel production constitutes a direct competition with their usage 
as food resulting in a reduction in food supply. Due to these li-
mitations, unconventional oil seeds and wastes are being explo-
red as feedstock in biodiesel production. Africa has great potential 
for biodiesel production based on its widespread diverse oil seed 
plants which are major feedstock for its production. Some of these 
oil-seeds already studied include: Luffa aegyptiaca Mill [4], [5], 
Ricinus communis [6], [7], Azadirachta indica [8], Jatropha curcas 
[9], [10] and Hevea brasiliensis [11]. And some unconventional 
oil-seeds which are non-edible but are good feedstock potential 
in producing biofuels include Delonix regia, Cypripedium acaule, 
Asclepias syriaca, Millettia pinnata, Sapindus mukorossi, and He-
lianthus annuus [12]-[14].

[15] studied the performance characteristics like; brake ther-
mal efficiency, torque, fuel used, and power output of an internal 
combustion engine when fuelled with some biodiesel. It was dis-
covered that biodiesels contain about 10 percent weight of oxygen. 
This oxygen enhances fuel combustion, yet it increases the amount 
of fuel consumed when the engine is in operation. The blends of 
Jatropha oil biodiesel with petroleum-based diesel gave a better 
brake thermal efficiency which rises from 27.4% to 28.7% [15].

Contrarily, [16] investigated sunflower, safflower, and rapeseed 
oil biodiesel fuel in diesel engines, and the power output was disco-
vered to be similar to the power output of petroleum-based diesel 
but durability challenges were predicted as a result of the carbo-
nizing effect. [17] investigate the effect of varied engine speeds at 
full and partial loads of a diesel engine comparing sunflower oil 
biodiesel with petroleum-based diesel as fuel during the operation. 
It was observed that sunflower biodiesel had a lower brake power 
and higher fuel consumption when compared with petroleum-ba-
sed diesel. Nevertheless, biodiesel is preferred to petroleum-based 
diesel based on its lubricant properties which help the lifespan of 
the engine. Being an oxygenated fuel, biodiesel produces lower 
greenhouse gas emissions in a diesel engine than petroleum-based 
diesel. 

Moreover, biodiesel is referred to as clean fuel because there 
is no production of SOx and CO2 in its emission during use. [18] 
evaluated the performance of tobacco seed oil biodiesel in a diesel 
engine and observed a rise in torque and power (having a lesser 
heating value of 39.8MJ/kg). Several experiments were carried 
out for indirect injection of biodiesel blends in diesel engines with 
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1500 and 3000rpm engine speeds. Despite the lower heating value 
that was observed with the use of biodiesel, the highest torque and 
power were observed when a 17.5 percent blend was used.  An in-
vestigation was carried out by [19] to examine differently oxidized 
soybean oil biodiesel. The fuel consumption of pure, oxidized, and 
non-oxidized biodiesel increased to 15.1, 12, and 13.8 % respecti-
vely. The variation in the fuel consumed is attributed to the varied 
heating values of the biodiesels. [20] investigated linseed oil biodi-
esel performance in a diesel engine. In the research, an increase in 
thermal efficiency was observed particularly at lower loads. 

In contrast, [21] observed a reduction in diesel engine effici-
ency when fueled with palm oil biodiesel of 0% and 20% blen-
ds, however, the slight variation (less than 2.3 percent in both ca-
ses) could be significant. It was also discovered that there was an 
increase in energy consumption. It was discovered that there was 
a power reduction at full load of the diesel engine at low speed and 
high speed of 5% to 10% reduction respectively [22].

Kariya seed oil has been found to be non-edible making it su-
itable for biodiesel production as it does not compete with human 
consumption [23]. The biodiesel produced from kariya seed oil has 
been found to be a good potential fuel to supplement petroleum-di-
esel in an internal combustion engine due to its fuel characteristics 
[24], yet the performance evaluation with emission properties of 
the engine while fuelled with this biodiesel is yet to be investigated 
in any literature. This study presents a proper way to manage the 
waste from kariya trees using it as a feedstock for biofuel produc-
tion and diversifying different seeds through which biofuel can be 
produced.

II. MaterIaLs and Methods 
 The performance evaluation (fuel consumption, brake power, 

and exhaust gas temperature) of a diesel engine (Nulux R175A Di-
esel Engine) fuelled with KOB and its blends were determined. 
The performance of the diesel engine was examined using petrole-
um-based diesel (B0), prepared kariya biodiesel blends; B10 (10% 
biodiesel, 90% petrol diesel), B30 (30% biodiesel, 70% petrol die-
sel), B50 (50% biodiesel, 50% petrol diesel), B70 (70% biodiesel, 
30% petrol diesel), and B90 (90% biodiesel, 10% petrol diesel), 
and biodiesel (B100) [24]. The brake power and the exhaust gas 
temperature were determined during operation using a Schenck 
W230 Eddy Current dynamometer and a thermometer respecti-
vely. Using a hand-held exhaust gas analyzer (Product Model: Ae-
roqual Series 500), emission characteristics also were determined; 
the rate of carbon monoxide, NOx, and hydrocarbon emissions. 
The results obtained when KOB blends were used were compared 
with that of pure petroleum-based diesel (B0).

III. resuLt and dIscussIon

The result obtained from the diesel engine performance when 
fueled with biodiesel blends revealed the behavior of each blend 
when used as fuel and it showed the appropriate blends for a di-
esel engine. 

A. emissioN ChArACteristiCs

The emission characteristics result obtained when fueled with 
the produced KOB blend is shown in Fig. 1(a-c). 

Fig. 1. Exhaust gas analysis vs. the biodiesel blends a) CO b) NOx c) HC

Figure 1a reveals that the carbon monoxide (CO) decreases as 
the biodiesel blends increase. A little increase in CO emitted was 
noticed with an increase in the engine speed.  As the diesel engine 
operates at 1000 rpm, the CO emitted was reduced from 0.35 – 
0.25, at 1200 rpm, the CO emitted was reduced from 0.32 – 0.23, 
and at 1400 rpm, the CO emitted was reduced from 0.34 – 0.24. 
It was observed that when petroleum-based diesel was used the 
CO emitted was higher than when biodiesel blends were used. The 
high cetane content and presence of oxygen in the biodiesel’s mo-
lecular structure can be the cause for the drop in CO emissions that 
occur as the blend increases. This result implies that since the bio-
diesel produced contains some oxygen, it aids in fuel combustion, 
leading to a reduction in CO emitted.

The emission characteristics as shown in Fig. 1b show that the 
increase of biodiesel blends slightly increases the emission of NOx 
from 16.38 – 17.44 ppm for 1000 rpm, 16.34 – 17.71 ppm for 1200 
rpm, and 15.55 – 17.58 ppm for 1400 rpm. However, there is a ran-
dom variation of NOx emission through the biodiesel blends as the 
engine speed increases. The NOx emitted when fueled with petro-
leum-based diesel at all engine speeds is lower than NOx emitted 
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is preferred to petroleum-based diesel based on its lubricant 
properties which help the lifespan of the engine. Being an 
oxygenated fuel, biodiesel produces lower greenhouse gas 
emissions in a diesel engine than petroleum-based diesel.  
Moreover, biodiesel is referred to as clean fuel because there is 
no production of SOx and CO2 in its emission during use. [18] 
evaluated the performance of tobacco seed oil biodiesel in a 
diesel engine and observed a rise in torque and power (having 
a lesser heating value of 39.8MJ/kg). Several experiments were 
carried out for indirect injection of biodiesel blends in diesel 
engines with 1500 and 3000rpm engine speeds. Despite the 
lower heating value that was observed with the use of biodiesel, 
the highest torque and power were observed when a 17.5 
percent blend was used.  An investigation was carried out by 
[19] to examine differently oxidized soybean oil biodiesel. The 
fuel consumption of pure, oxidized, and non-oxidized biodiesel 
increased to 15.1, 12, and 13.8 % respectively. The variation in 
the fuel consumed is attributed to the varied heating values of 
the biodiesels. [20] investigated linseed oil biodiesel 
performance in a diesel engine. In the research, an increase in 
thermal efficiency was observed particularly at lower loads.  
In contrast, [21] observed a reduction in diesel engine 
efficiency when fueled with palm oil biodiesel of 0% and 20% 
blends, however, the slight variation (less than 2.3 percent in 
both cases) could be significant. It was also discovered that 
there was an increase in energy consumption. It was discovered 
that there was a power reduction at full load of the diesel engine 
at low speed and high speed of 5% to 10% reduction 
respectively [22]. 
Kariya seed oil has been found to be non-edible making it 
suitable for biodiesel production as it does not compete with 
human consumption [23]. The biodiesel produced from kariya 
seed oil has been found to be a good potential fuel to 
supplement petroleum-diesel in an internal combustion engine 
due to its fuel characteristics [24], yet the performance 
evaluation with emission properties of the engine while fuelled 
with this biodiesel is yet to be investigated in any literature. This 
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trees using it as a feedstock for biofuel production and 
diversifying different seeds through which biofuel can be 
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determined. The performance of the diesel engine was 
examined using petroleum-based diesel (B0), prepared kariya 
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(30% biodiesel, 70% petrol diesel), B50 (50% biodiesel, 50% 
petrol diesel), B70 (70% biodiesel, 30% petrol diesel), and B90 
(90% biodiesel, 10% petrol diesel), and biodiesel (B100) [24]. 
The brake power and the exhaust gas temperature were 
determined during operation using a Schenck W230 Eddy 
Current dynamometer and a thermometer respectively. Using a 
hand-held exhaust gas analyzer (Product Model: Aeroqual 

Series 500), emission characteristics also were determined; the 
rate of carbon monoxide, NOx, and hydrocarbon emissions. 
The results obtained when KOB blends were used were 
compared with that of pure petroleum-based diesel (B0). 
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engine.  
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The emission characteristics result obtained when fueled 
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by all the biodiesel blends except at the speed of 1400 rpm when 
the B10 blend is lower than that of petroleum-based diesel. This 
result agrees with the findings of previous research on the effect 
of biodiesel on the NOx emissions which indicate a slight increa-
se in NOx emitted when the biodiesel increases in the blend [19]. 
Some studies reveal no significant difference in NOx emitted when 
biodiesel increases in the blend. According to [8], the presence of 
monomers and polymers of unsaturated fatty acids in biodiesel can 
be the cause of an increase in NOx emitted. It can also be attributed 
to the presence of oxygen in the biodiesel which results in NOx 
formation that is majorly initiated by high cylinder temperature 
with its occurrence crank angle.

The result in Fig. 1c showed that hydrocarbon emitted by the 
engine decreases with the increase of biodiesel in the blend but 
increases with an increase in engine speed. It was discovered that 
the hydrocarbon emitted when petroleum-based diesel (B0) was 
used as fuel in the diesel engine was more compared to when bio-
diesel blends were used. The decrease in hydrocarbon emitted with 
an increase in biodiesel blends can also be attributed to the low 
viscosity and the oxygen content in the biodiesel produced leading 
to better combustion of the fuel. The increase in the hydrocarbon 
emitted when the engine speed increases may be associated with 
the increasing fuel quantity injected into the engine cylinder resul-
ting in the fuel incomplete combustion thereby increasing hydro-
carbon emitted. A similar trend was also observed with decreasing 
CO and HC and increasing NOx while operating the diesel engine 
with biodiesel produced using castor oil, soybean oil, rapeseed oil, 
sunflower oil, and olive oil ([1], [25], [14], [26]). Conversely, the 
NOx emitted decreased as the biodiesel increased in the blends 
when karanja oil, neem oil, jatropha, and sesame oil were tested 
in a diesel engine though a trend of decrease in CO and HC was 
observed [27].

B. PerformANCe eVAluAtioN

From Fig. 2a, it was observed that the fuel consumed by the 
engine increased as biodiesel increased in the blends between B10 
and B90 from 243.53 – 250.08 g/kWh, 245.88 – 249.85 g/kWh, 
and 247.10 – 250.35 g/kWh for 1000, 1200, and 1400 rpm respec-
tively. Also, it was observed that the fuel consumed by the engine 
increases as the engine speed increases except for a slight differen-
ce with B30 and B90. This increase may be attributed to the high 
quantity of fuel introduced into the engine cylinder. It was also dis-
covered that the fuel consumed when KOB was used increased as 
the blend increased due to the lower calorific value, higher visco-
sity, and higher volumetric fuel delivery of KOB per engine stroke.

Figure 2b shows the relationship between the brake power and 
the biodiesel blend ratio concerning the engine speed. At an incre-
asing profile of the blends in the biodiesel for 1000rpm, 1200rpm, 
and 1400rpm, the brake power of the engine decreases. From the 
result, there is no substantial difference between the brake power of 
petroleum-based diesel and B10 of the biodiesel blend. [28] expla-
ined that the decrease in the engine brake power as biodiesel incre-
ases in the blends can be because of the lower heating value of the 
biodiesel. A similar trend was observed for biodiesel obtained from 
corn oil, rapeseed oil, soybean oil, and sunflower oil [29].  

The graphical relationship between the exhaust gas tempera-
ture and the biodiesel blends concerning engine speed is shown in 
Fig. 2c. From the result, it was discovered that at an engine speed 
of 1000 and 1400 rpm, the Exhaust gas temperature decreases 
from 104.25 – 99.07 °C, 109.98 – 104.23 °C respectively with an 
increase of biodiesel in the blends from B10 to B90 while at engine 
speed 1200 rpm, the exhaust gas initially drops at B10 and then rise 
at B30 and finally decrease as the biodiesel increase. The tempe-
rature of the exhaust gas emitted by petroleum-based diesel (B0) 

is higher compared to biodiesel blends and this indicates that in 
biodiesel, there is complete combustion that has taken place in the 
engine cylinder converting energy from the fuel to maximum use-
ful work compared to petroleum-based diesel. There is an increase 
in the exhaust gas temperature when the speed increases because 
more fuel has been released into the cylinder and there is more 
combustion of the fuel which produces heat.
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Figure 1a reveals that the carbon monoxide (CO) decreases 
as the biodiesel blends increase. A little increase in CO emitted 
was noticed with an increase in the engine speed.  As the diesel 
engine operates at 1000 rpm, the CO emitted was reduced from 
0.35 – 0.25, at 1200 rpm, the CO emitted was reduced from 0.32 
– 0.23, and at 1400 rpm, the CO emitted was reduced from 0.34 
– 0.24. It was observed that when petroleum-based diesel was 
used the CO emitted was higher than when biodiesel blends 
were used. The high cetane content and presence of oxygen in 
the biodiesel's molecular structure can be the cause for the drop 
in CO emissions that occur as the blend increases. This result 
implies that since the biodiesel produced contains some oxygen, 
it aids in fuel combustion, leading to a reduction in CO emitted. 

The emission characteristics as shown in Fig. 1b show that 
the increase of biodiesel blends slightly increases the emission 
of NOx from 16.38 – 17.44 ppm for 1000 rpm, 16.34 – 17.71 
ppm for 1200 rpm, and 15.55 – 17.58 ppm for 1400 rpm. 
However, there is a random variation of NOx emission through 
the biodiesel blends as the engine speed increases. The NOx 
emitted when fueled with petroleum-based diesel at all engine 
speeds is lower than NOx emitted by all the biodiesel blends 
except at the speed of 1400 rpm when the B10 blend is lower 
than that of petroleum-based diesel. This result agrees with the 
findings of previous research on the effect of biodiesel on the 
NOx emissions which indicate a slight increase in NOx emitted 
when the biodiesel increases in the blend [19]. Some studies 
reveal no significant difference in NOx emitted when biodiesel 
increases in the blend. According to [8], the presence of 
monomers and polymers of unsaturated fatty acids in biodiesel 
can be the cause of an increase in NOx emitted. It can also be 
attributed to the presence of oxygen in the biodiesel which 
results in NOx formation that is majorly initiated by high 
cylinder temperature with its occurrence crank angle. 
The result in Fig. 1c showed that hydrocarbon emitted by the 
engine decreases with the increase of biodiesel in the blend but 
increases with an increase in engine speed. It was discovered 
that the hydrocarbon emitted when petroleum-based diesel (B0) 
was used as fuel in the diesel engine was more compared to 
when biodiesel blends were used. The decrease in hydrocarbon 
emitted with an increase in biodiesel blends can also be 
attributed to the low viscosity and the oxygen content in the 
biodiesel produced leading to better combustion of the fuel. The 
increase in the hydrocarbon emitted when the engine speed 
increases may be associated with the increasing fuel quantity 
injected into the engine cylinder resulting in the fuel incomplete 
combustion thereby increasing hydrocarbon emitted. A similar 
trend was also observed with decreasing CO and HC and 
increasing NOx while operating the diesel engine with biodiesel 
produced using castor oil, soybean oil, rapeseed oil, sunflower 
oil, and olive oil ([1], [25], [14], [26]). Conversely, the NOx 
emitted decreased as the biodiesel increased in the blends when 
karanja oil, neem oil, jatropha, and sesame oil were tested in a 
diesel engine though a trend of decrease in CO and HC was 
observed [27]. 
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Iv. concLusIon

When a diesel engine was fueled with kariya diesel blends, 
there was a reduction in the emission of CO and HC as biodie-
sel increased in the blends, however, there was a little more NOx 
emitted when biodiesel blends were used compared to when petro-
leum-based diesel was used. Also, the fuel consumed increases as 
biodiesel increases in the blends while the brake power and exha-
ust gas temperature are lesser when biodiesel is used compared to 
petroleum-based diesel. The oxygen content and low viscosity of 
the biodiesel produced aid complete fuel combustion thereby re-
ducing the CO and HC emitted while increasing the NOx emitted. 
Also, the oxygen content with a lower calorific value of the bio-
diesel results in more fuel consumed compared to when petrole-
um-based diesel was used. The decrease in engine brake power 
as the biodiesel increases in the blend may be due to the lower 
heating value of biodiesel. It was noted that there was a decrease in 
exhaust gas temperature when the biodiesel increased in the blend 
because of the physicochemical properties of the fuel and the level 
of oxygen present in it. Based on these findings showing reduced 
NOx emitted and low fuel consumption, two of the blends of the 
kariya biodiesel produced i.e. B10 and B30 were more appropriate 
for use optimally in a diesel engine. For further study on this rese-
arch, the result of the emission characteristics and the performance 
evaluation of the engine when fueled with KOB and its blends sho-
uld be compared with the performance of the engine when fueled 
with another biodiesel.
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The Roles of Battery Energy Storage System in 
Different Energy Communities

Filip Dimač, Ivan Rajšl, Sara Raos and Goran Ribić 

Summary — This article analyses the concept of energy 
communities. Energy communities are basically divided into 
physical and virtual communities, and they are also differentiated 
according to business models. The development of these business 
models requires virtual connectivity enabled by digital platforms, 
smart grids and the Internet of Things. The advantages and disad-
vantages of energy communities are described, and the legal side 
is analysed. The role of battery storage in the energy community is 
described and the aim of this paper is to analyse the role of battery 
storage in different types of energy communities. A mathematical 
model has been described to analyse the viability of the battery in 
three energy communities with different consumption curves and 
the results obtained by simulation have been presented.

Keywords — energy communities, battery energy storage 
system, rooftop, PV solar system

I. IntroductIon

the energy transition process refers to changes in the way 
energy is produced and used, with the aim of reducing its 
price and its negative impact on the environment. The main 

reason for initiating the energy transition is climate change and the 
reduction of greenhouse gases. As a result of the energy transition, 
consumers are becoming active consumers – “prosumers” who not 
only draw energy from the grid but also make it available for others 
to use as needed. The development of information and commu-
nication technologies is making a significant contribution to the 
development of innovative management solutions [1]

Energy communities are proving to be one of the most suitable 
solutions for the integrating prosumers and their distributed sour-
ces. The application of this market-based mechanism can lead to 
a better local balance of supply and demand for electrical energy, 
reduce voltage deviations from nominal values and improve the 
welfare of the entire community. As part of the “Clean energy for 
all Europeans” package (2019), EU directives introduced new pro-
visions for the organisation of the energy market and framework 
conditions for new energy initiatives. The framework for collecti-
ve self-consumption is often defined separately from the provisi-
ons for energy communities due to its simplicity and significantly 
lower administrative and organisational requirements. [2] Three 

concepts are defined: collective self-consumption, renewable 
energy community and citizen energy community.

Energy communities can be implemented in different ways 
depending on various factors, but the simplest categorization is 
into physical and virtual energy communities. The main difference 
between the different types of energy communities lies in the way 
of using the power network and how the energy produced and con-
sumed is billed and paid for. In the case of physical communities, 
a distinction can be made between collective self-consumption, 
i.e. consumers of their own renewable energy (private grid, e.g. 
neighborhood or residential building) and collective self-consump-
tion (private and public grid). A virtual community is often defined 
as a regional community by its wider geographical context. [5]

Legislation can restrict the connection of members and thus 
the technical organisation of energy communities. An important 
aspect of energy communities is therefore to examine the legally 
permissible connections between participants before considering 
the technical aspects. In addition to the differences in the connec-
tion between participants, energy communities also differ in their 
business models. Research has identified and described six main 
archetypes and business models of energy communities. [4]

Battery energy storage systems (BESS) could solve many pro-
blems in electricity generation and distribution in the future. Gene-
ration from renewable energy sources (RES) is often dependent on 
weather conditions. Distributing the output of solar power plants 
(SPP) every hour or 15 minutes [12] is a challenge for the electri-
city system, which leads to an increased need for flexibility in the 
entire power system. In reference [9], the term flexibility of the 
electricity system was defined and the authors proved with their 
mathematical model that BESS have positive effects on systems 
with RES. Without RES, they reduce the need for peak load power 
plants, and with renewables they reduce the curtailment of renewa-
ble energy, but with BESS the flexibility of the electricity system 
was better. System flexibility was better with or without renewa-
bles when BESS was introduced.

The flexibility of power supply systems can be increased in 
many ways, including the intelligent use of electrical devices and 
the implementation of BESS. BESS are highly customisable and it 
is possible to choose the most suitable BESS solution for a specific 
purpose. Although BESS could be used to solve many problems 
related to energy systems, they are not yet widely used due to 
high costs and low profitability. Over the past decade, lithium-ion 
battery prices have fallen significantly and this trend is expected 
to continue. The decreasing cost of the battery makes it a more 
interesting solution and increases profitability.

In reference [3], the interaction of individual prosumers with 
the electricity grid was analysed and it was investigated how the 
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organisation of prosumers in energy communities affects their in-
teraction with the grid. Individual prosumers independently invest 
and manage their own photovoltaic (PV) and BESS sources and 
buy and sell energy directly from the grid, while in the prosumer 
community the capacity and operation of the PV and BESS are op-
timised at the level of the entire community. The electricity gene-
rated in the community can be freely used by all members to meet 
demand at any given time or to charge any battery. The community 
also has the possibility to trade (buy and sell) electricity with the 
grid.

The high integration of photovoltaic systems can cause the 
problem of overvoltage in the grid. This problem can be solved 
through the use of BESS, usually connected in parallel with the 
photovoltaic power plant, and a system that manages the battery 
at the local level (household or community), taking into account 
the technical conditions of the grid, i.e. the conditions for maintai-
ning voltage quality. Economic strategies of system management, 
whose goal is to maximise profits, ignore these conditions, but by 
intelligently using the overall potential of BESS, participants have 
the opportunity to offer services to grid operators in this way as 
well. Research [6] has shown that if the battery degradation factor 
is ignored, the battery will actually cause voltage problems. Re-
stricting the operation of the battery to reduce its degradation will 
result in lower voltage spikes. In other words, battery-friendly ope-
ration is also grid-friendly operation. The schematic of the energy 
community with PV generation and a BESS is shown in Figure 1.

Fig. 1. BESS and PV integration scheme in the energy community [8]

The most common goal when installing BESS is to increase 
local self-consumption generated by photovoltaic systems. Altho-
ugh such systems reduce the amount of electricity exported to the 
grid from photovoltaic installations, there are many other benefits 
of the impact of batteries on the grid if they are properly managed. 
The BESS themselves have no influence on the production of pho-
tovoltaic power plants due to their temporal variability, but through 
their intelligent use it is possible to reduce peak consumption cur-
ves and thus relieve the grid and avoid grid congestion. This is po-
ssible by predicting generation from photovoltaic systems and con-
sumption in households. Residential buildings are ideally suited 
to providing these services, as their consumption generally occurs 
at different times of day than the high output of the photovoltaic 
systems. This is in contrast to office buildings, where consumption 
is high during the day when generation from photovoltaic systems 
is also high. To maximise the economic benefit, the generation ca-
pacities and the battery must be correctly dimensioned based on 
the user’s consumption. Generally, the production is dimensioned 
first and then the optimal battery capacity is determined.

This paper contributes to the evaluation of the role of battery 
systems in different energy communities. It also points out the 
advantages and disadvantages of the role of batteries in different 
energy communities. The rest of the paper is organised as follows: 
The evaluation approach and the applied software are presented in 

the Methodology chapter, while the Mathematical Model chapter 
presents the underlying mathematical expressions of the model. 
The results are presented and discussed in Chapter 4, Analysing 
battery storage in different types of energy communities, while 
Chapter 5 concludes the paper.

II. MethodoLoGY

The aim of this paper is to analyse the role of the BESS 
in different energy communities. For this purpose, three energy 
communities were designed and BESS was included in each of 
these three energy communities. The energy communities are 
differentiated by the seasonal electricity demand and the type of 
consumers that meet the needs of the communities themselves. 
Sometimes these communities may have a surplus of electricity. 
It is assumed that the surplus electricity generated can be sold 
at 80% of the current market price. The task is to perform a 
linear optimisation with a cost minimisation objective functi-
on that gives an optimal solution for each of the communities 
based on data on production, consumption, electricity prices, 
battery capacity, battery charging and discharging power and 
taking into account various constraints. Based on the optimisa-
tion solution, the municipalities can be compared and it can be 
shown in which type of municipality the use of BESS is most 
profitable. The Gurobi software package [13] was used to solve 
the optimisation problem. To perform the linear optimisation, 
data on annual electricity prices on the wholesale market on an 
hourly basis, data on annual consumption of electricity and ther-
mal energy on an hourly basis and data on annual electricity 
generation from solar cells on an hourly basis are required. Data 
on electricity prices on the wholesale market in Croatia for the 
year 2023 on an hourly basis were used. [7]

To estimate electricity consumption, the nPRO software was 
used, which estimates heating, cooling and electricity require-
ments based on the geographical location, surface area and type 
of facility (kindergarten, school, hall, swimming pool, theatre, 
etc.). The facilities differ in terms of quantity and consump-
tion curves. For more accurate modelling of heating, cooling 
and electricity demand for each type of facility, it is possible to 
manually enter data on specific annual consumption (kWh/m2/
year) and total annual consumption (MWh). It is also possible 
to determine the start and end of the heating and cooling season, 
the percentage of heating for hot water production, the percen-
tage of cooling for cooling the system and the percentage of 
heat recovery from heating losses. It is possible to make manual 
changes within the daily curve for each hour and each day of the 
week. Once all parameters have been set by pressing the “Cal-
culate” button, the software outputs annual hourly consumption 
curves that can be created in an Excel document.

In order to cover the community’s thermal energy require-
ments, it was assumed that the community uses heat pumps, as 
heat pumps use electricity to generate heat and therefore the en-
tire energy requirement can be regarded as an electricity requi-
rement, which greatly simplifies optimisation. The coefficient of 
performance ( COP) indicates the ratio between the heat energy 
generated and the amount of electricity required by the heat 
pump for its work. In our case, we have assumed an efficiency 
of 3.

The SolarEdge [14] software was used to dimension the 
production capacity, which based on the geographical location, 
surface and slope of the roof, and on the basis of the type and 
slope of the photovoltaic panels, estimates how many photo-
voltaic panels can be installed on the roof, how many inverters 
are needed for the operation of the power plant and, ultimately, 
the production of the power plant. The software was used to 
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authors proved with their mathematical model that BESS have 
positive effects on systems with RES. Without RES, they 
reduce the need for peak load power plants, and with 
renewables they reduce the curtailment of renewable energy, 
but with BESS the flexibility of the electricity system was 
better. System flexibility was better with or without renewables 
when BESS was introduced. 
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and the implementation of BESS. BESS are highly 
customisable and it is possible to choose the most suitable 
BESS solution for a specific purpose. Although BESS could be 
used to solve many problems related to energy systems, they 
are not yet widely used due to high costs and low profitability. 
Over the past decade, lithium-ion battery prices have fallen 
significantly and this trend is expected to continue. The 
decreasing cost of the battery makes it a more interesting 
solution and increases profitability. 
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invest and manage their own photovoltaic (PV) and BESS 
sources and buy and sell energy directly from the grid, while in 
the prosumer community the capacity and operation of the PV 
and BESS are optimised at the level of the entire community. 
The electricity generated in the community can be freely used 
by all members to meet demand at any given time or to charge 
any battery. The community also has the possibility to trade 
(buy and sell) electricity with the grid. 
The high integration of photovoltaic systems can cause the 
problem of overvoltage in the grid. This problem can be solved 
through the use of BESS, usually connected in parallel with the 
photovoltaic power plant, and a system that manages the battery 
at the local level (household or community), taking into account 
the technical conditions of the grid, i.e. the conditions for 
maintaining voltage quality. Economic strategies of system 
management, whose goal is to maximise profits, ignore these 
conditions, but by intelligently using the overall potential of 
BESS, participants have the opportunity to offer services to grid 
operators in this way as well. Research [6] has shown that if the 
battery degradation factor is ignored, the battery will actually 
cause voltage problems. Restricting the operation of the battery 
to reduce its degradation will result in lower voltage spikes. In 
other words, battery-friendly operation is also grid-friendly 
operation. The schematic of the energy community with PV 
generation and a BESS is shown in Figure 1.

 
Fig. 1. BESS and PV integration scheme in the energy 
community [8] 
 

The most common goal when installing BESS is to increase 
local self-consumption generated by photovoltaic systems. 
Although such systems reduce the amount of electricity 
exported to the grid from photovoltaic installations, there are 
many other benefits of the impact of batteries on the grid if they 
are properly managed. The BESS themselves have no influence 
on the production of photovoltaic power plants due to their 
temporal variability, but through their intelligent use it is 
possible to reduce peak consumption curves and thus relieve the 
grid and avoid grid congestion. This is possible by predicting 
generation from photovoltaic systems and consumption in 
households. Residential buildings are ideally suited to 
providing these services, as their consumption generally occurs 
at different times of day than the high output of the photovoltaic 
systems. This is in contrast to office buildings, where 
consumption is high during the day when generation from 
photovoltaic systems is also high. To maximise the economic 
benefit, the generation capacities and the battery must be 
correctly dimensioned based on the user's consumption. 
Generally, the production is dimensioned first and then the 
optimal battery capacity is determined. 

This paper contributes to the evaluation of the role of battery 
systems in different energy communities. It also points out the 
advantages and disadvantages of the role of batteries in 
different energy communities. The rest of the paper is organised 
as follows: The evaluation approach and the applied software 
are presented in the Methodology chapter, while the 
Mathematical Model chapter presents the underlying 
mathematical expressions of the model. The results are 
presented and discussed in Chapter 4, Analysing battery storage 
in different types of energy communities, while Chapter 5 
concludes the paper. 

II. METHODOLOGY 
The aim of this paper is to analyse the role of the BESS in 

different energy communities. For this purpose, three energy 
communities were designed and BESS was included in each of 
these three energy communities. The energy communities are 
differentiated by the seasonal electricity demand and the type of 
consumers that meet the needs of the communities themselves. 
Sometimes these communities may have a surplus of electricity. 
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estimate the roof and building areas, which is a necessary pa-
rameter for the nPro software that uses this data to estimate the 
consumption curves. The software was also used to estimate the 
number of photovoltaic panels that can be installed on the roofs, 
to estimate the maximum output of the photovoltaic power plant 
and to design a rooftop PV system. When dimensioning the pro-
duction, the condition was taken into account that the producti-
on must not be higher than the peak consumption.  When sizing 
all three communities, this was not the case at any time. Unfor-
tunately, SolarEdge does not have the ability to generate Excel 
documents. For this reason, it was not used to obtain the annual 
hourly production curve required for further analysis.

Renewables.Ninja [15] [16] is a software that, based on the 
geographical location, the maximum DC or AC power of the 
photovoltaic power plant and the tilt of the panels, generates 
the annual hourly curves of the production of the photovoltaic 
power plant in the form of an Excel document.

The models of photovoltaic panels, inverters and battery stora-
ge in all communities are the same, but their sizing differs depen-
ding on the consumption of the communities themselves. The Tri-
na Solar Vertex S TSM-DE09R.08 model was selected for the pho-
tovoltaic panel, 425 Wp efficiency 21.3%, dimensions 1762mm x 
1134mm x 30mm and weight 21.8 kg. This photovoltaic panel was 
chosen for the reason that it has suitable dimensions and weight 
and is therefore easier to install, and the ratio of load on the roof 
and safety against strong winds and bad weather is optimal. In the 
first year, the panel loses 2% of its power, and then each time the 
power decreases by a maximum of 0.55%. The degradation factor 
must be taken into account when calculating the investment return. 

The capacity of the battery storage is dimensioned based on 
the average electricity consumption during the night hours when 
there is no production in the community. The capacity to satisfy the 
eight-hour autonomy from 12 pm to 8 am was estimated.  

The KSTAR 100kWh model was chosen for the battery stora-
ge. Battery storage always comes with its own converter. 

Urban heat islands (UHI) represent increase of temperatu-
re inside of cities in regard to their rural environment, and with 
electricity production, photovoltaic panels have additional positive 
impact on thermal characteristics of the building on which they 
are installed by significantly lowering energy necessary for cooling 
inside the building. Panels block direct sun radiation which directly 
decreases roof temperature and wind drift between panels and roof 
additionally increases the positive effect by convection cooling. 
[10] Commonly, this important benefit is not taken into account 
when creating a mathematical model of a solar power plant, so we 
will not do it either, but it is important to point out that this positive 
effect will provide additional financial savings for all members of 
the energy community.

III. MatheMatIcaL ModeL

The goal of the model is to minimize the costs of the commu-
nity that produces, consumes, stores, buys and sells energy in a 
period of one year. 

The objective function of the optimization problem can be 
written as:

(1)

 Where 
B is purchased energy, S is sold energy, price[t] is the price of 
electricity, and in the range of 0-8760 represents the number of 
hours in a year. The part of function  

price[t]*(B[t]-0.8*S[t]) represents expenses reduced for income.

The equation of balance between electricity consumption and 
production:

HH1ee[t] + HPe[t] = = B[t] - S[t] + PV[t] + ch[t] - dch[t]     (2)

Variables:

B - purchased energy

S - sold energy

HP - thermal energy of the heat pump

HPe - heat pump electricity

ch - charging energy

dch - energy discharge

soe - battery charge status

x - charge discharge binary

XB - purchased energy binary

XS - sold energy binary

PV - production from photovoltaics

HH1ee - electricity consumption

HH1hd – heat demand

 
Constants:

 
In addition to consumption, production and price data, model con-
straints are also needed. 

The constraints are:   

1. State of charge of the batteries at the beginning and for all 
other hours:

2. The demand for thermal energy is met through heat pumps:

3. Limitation of the maximum charging and discharging power 
and impossibility of charging and discharging at the same time: 

4. Limitation that energy cannot be bought and sold at the same time: 
 

3 
 

It is assumed that the surplus electricity generated can be sold at 
80% of the current market price. The task is to perform a linear 
optimisation with a cost minimisation objective function that 
gives an optimal solution for each of the communities based on 
data on production, consumption, electricity prices, battery 
capacity, battery charging and discharging power and taking into 
account various constraints. Based on the optimisation solution, 
the municipalities can be compared and it can be shown in which 
type of municipality the use of BESS is most profitable. The 
Gurobi software package [13] was used to solve the optimisation 
problem. To perform the linear optimisation, data on annual 
electricity prices on the wholesale market on an hourly basis, data 
on annual consumption of electricity and thermal energy on an 
hourly basis and data on annual electricity generation from solar 
cells on an hourly basis are required. Data on electricity prices on 
the wholesale market in Croatia for the year 2023 on an hourly 
basis were used. [7] 

To estimate electricity consumption, the nPRO software was 
used, which estimates heating, cooling and electricity 
requirements based on the geographical location, surface area 
and type of facility (kindergarten, school, hall, swimming pool, 
theatre, etc.). The facilities differ in terms of quantity and 
consumption curves. For more accurate modelling of heating, 
cooling and electricity demand for each type of facility, it is 
possible to manually enter data on specific annual consumption 
(kWh/m2/year) and total annual consumption (MWh). It is also 
possible to determine the start and end of the heating and cooling 
season, the percentage of heating for hot water production, the 
percentage of cooling for cooling the system and the percentage 
of heat recovery from heating losses. It is possible to make 
manual changes within the daily curve for each hour and each 
day of the week. Once all parameters have been set by pressing 
the "Calculate" button, the software outputs annual hourly 
consumption curves that can be created in an Excel document. 

In order to cover the community's thermal energy 
requirements, it was assumed that the community uses heat 
pumps, as heat pumps use electricity to generate heat and 
therefore the entire energy requirement can be regarded as an 
electricity requirement, which greatly simplifies optimisation. 
The coefficient of performance ( COP) indicates the ratio 
between the heat energy generated and the amount of electricity 
required by the heat pump for its work. In our case, we have 
assumed an efficiency of 3. 

The SolarEdge [14] software was used to dimension the 
production capacity, which based on the geographical location, 
surface and slope of the roof, and on the basis of the type and 
slope of the photovoltaic panels, estimates how many 
photovoltaic panels can be installed on the roof, how many 
inverters are needed for the operation of the power plant and, 
ultimately, the production of the power plant. The software was 
used to estimate the roof and building areas, which is a necessary 
parameter for the nPro software that uses this data to estimate the 
consumption curves. The software was also used to estimate the 
number of photovoltaic panels that can be installed on the roofs, 
to estimate the maximum output of the photovoltaic power plant 
and to design a rooftop PV system. When dimensioning the 
production, the condition was taken into account that the 

production must not be higher than the peak consumption.  When 
sizing all three communities, this was not the case at any time. 
Unfortunately, SolarEdge does not have the ability to generate 
Excel documents. For this reason, it was not used to obtain the 
annual hourly production curve required for further analysis. 

Renewables.Ninja [15] [16] is a software that, based on the 
geographical location, the maximum DC or AC power of the 
photovoltaic power plant and the tilt of the panels, generates the 
annual hourly curves of the production of the photovoltaic power 
plant in the form of an Excel document. 

The models of photovoltaic panels, inverters and battery 
storage in all communities are the same, but their sizing differs 
depending on the consumption of the communities themselves. 
The Trina Solar Vertex S TSM-DE09R.08 model was selected 
for the photovoltaic panel, 425 Wp efficiency 21.3%, 
dimensions 1762mm x 1134mm x 30mm and weight 21.8 kg. 
This photovoltaic panel was chosen for the reason that it has 
suitable dimensions and weight and is therefore easier to install, 
and the ratio of load on the roof and safety against strong winds 
and bad weather is optimal. In the first year, the panel loses 2% 
of its power, and then each time the power decreases by a 
maximum of 0.55%. The degradation factor must be taken into 
account when calculating the investment return.  

The capacity of the battery storage is dimensioned based on 
the average electricity consumption during the night hours 
when there is no production in the community. The capacity to 
satisfy the eight-hour autonomy from 12 pm to 8 am was 
estimated.   

The KSTAR 100kWh model was chosen for the battery 
storage. Battery storage always comes with its own converter.  

Urban heat islands (UHI) represent increase of temperature 
inside of cities in regard to their rural environment, and with 
electricity production, photovoltaic panels have additional 
positive impact on thermal characteristics of the building on 
which they are installed by significantly lowering energy 
necessary for cooling inside the building. Panels block direct 
sun radiation which directly decreases roof temperature and 
wind drift between panels and roof additionally increases the 
positive effect by convection cooling. [10] Commonly, this 
important benefit is not taken into account when creating a 
mathematical model of a solar power plant, so we will not do it 
either, but it is important to point out that this positive effect 
will provide additional financial savings for all members of the 
energy community. 

 

III. MATHEMATICAL MODEL 
The goal of the model is to minimize the costs of the 

community that produces, consumes, stores, buys and sells energy 
in a period of one year.  

The objective function of the optimization problem can be 
written as: 

 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] ∗ (𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 0.8 ∗ 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡])8760

𝑡𝑡𝑡𝑡=0  (1) 
 

Where B is purchased energy, S is sold energy, price[t] is the 
price of electricity, and in the range of 0-8760 represents the 
number of hours in a year. The part of function  
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] ∗ (𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 0.8 ∗ 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]) represents expenses reduced for  
income. 
The equation of balance between electricity consumption and 
production: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] == 𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃[𝑡𝑡𝑡𝑡] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] (2) 

 
Variables: 
B - purchased energy 
S - sold energy 
HP - thermal energy of the heat pump 
HPe - heat pump electricity 
ch - charging energy 
dch - energy discharge 
soe - battery charge status 
x - charge discharge binary 
XB - purchased energy binary 
XS - sold energy binary 
PV - production from photovoltaics 
HH1ee - electricity consumption 
HH1hd – heat demand 
 
Constants: 
𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ  =  0.95 =charge/discharge efficiency 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 = 3 =efficiency coefficient 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =battery discharge power 
𝐶𝐶𝐶𝐶 =  𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = maximum power of heat pumps 
 
In addition to consumption, production and price data, model 
constraints are also needed.  
 
The constraints are:    
 
1. State of charge of the batteries at the beginning and for all 
other hours: 
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[0] =  0           (3) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡 − 1] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ � 1

𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�   (4) 

 
2. The demand for thermal energy is met through heat pumps: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡]  =  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1ℎ𝑑𝑑𝑑𝑑[𝑡𝑡𝑡𝑡]  ∗  (1/𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻)        (5) 

 
3. Limitation of the maximum charging and discharging power 
and impossibility of charging and discharging at the same 
time: 
 
𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡]  <=  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑋𝑋𝑋𝑋[𝑡𝑡𝑡𝑡]         (6) 
𝑑𝑑𝑑𝑑ℎ[𝑡𝑡𝑡𝑡]  <=  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  (1 −  𝑋𝑋𝑋𝑋[𝑡𝑡𝑡𝑡])        (7) 
 
4. Limitation that energy cannot be bought and sold at the 
same time: 
 
𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]  < =  𝑀𝑀𝑀𝑀 ∗  𝑋𝑋𝑋𝑋𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]          (8) 
𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  < =  𝑀𝑀𝑀𝑀 ∗  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]          (9) 
𝑋𝑋𝑋𝑋𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]  +  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  <=  1         (10) 

 
Big number M (100,000) is used according to optimization 
practice in order to ensure that energy cannot be bought 
(charged) and sold (discharged) at the same time. 
 
IV. ANALYSIS OF BATTERY STORAGE IN DIFFERENT 

TYPES OF ENERGY COMMUNITIES 
 

A. Community 1 
Community 1 consists of consumption, production and a 

BESS, and the community is located in the area of Zagreb. 
Consumers are: 40 apartments/apartments, a restaurant and a 
parking lot with a charging station for electric vehicles. The 
production is from photovoltaic panels that are placed on the 
roofs of all the mentioned buildings. 
Figure 2 shows the community 1 and layout of photovoltaic 
panels.  

 
Fig. 2. – Community 1 
 

It is planned that each of the apartments consists of two 
bedrooms with one bathroom and a separate toilet and is 60m2 
in size in order to meet the requirements of the 4-star tourist 
apartment categorization. The apartments and the restaurant are 
open all year. Restaurant and restaurant roof area data were 
estimated in Solar Edge software and shown in Table 1. 
 

TABLE I 
AREAS OF BUILDINGS AND NUMBER OF PEOPLE IN 

COMMUNITY 1 
 

Object Surface area Number of people 
40 apartments/flats 2400 m² 160 
Restaurant 680 m² 350 
Total 3080 m² 510 

 
There are two charging stations (Siemens VersiCharge 7.2 

kW) in the parking lot, for which the estimated daily charging 
of two cars per charging station is 4 hours per charge. On a daily 
basis, the filling station consumes 115 kWh, while on an annual 
basis it consumes 42 MWh. The estimated annual consumption 
of electricity is 361.1 MWh. 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] ∗ (𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 0.8 ∗ 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]) represents expenses reduced for  
income. 
The equation of balance between electricity consumption and 
production: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] == 𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃[𝑡𝑡𝑡𝑡] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] (2) 

 
Variables: 
B - purchased energy 
S - sold energy 
HP - thermal energy of the heat pump 
HPe - heat pump electricity 
ch - charging energy 
dch - energy discharge 
soe - battery charge status 
x - charge discharge binary 
XB - purchased energy binary 
XS - sold energy binary 
PV - production from photovoltaics 
HH1ee - electricity consumption 
HH1hd – heat demand 
 
Constants: 
𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ  =  0.95 =charge/discharge efficiency 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 = 3 =efficiency coefficient 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =battery discharge power 
𝐶𝐶𝐶𝐶 =  𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = maximum power of heat pumps 
 
In addition to consumption, production and price data, model 
constraints are also needed.  
 
The constraints are:    
 
1. State of charge of the batteries at the beginning and for all 
other hours: 
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[0] =  0           (3) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡 − 1] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ � 1

𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�   (4) 

 
2. The demand for thermal energy is met through heat pumps: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡]  =  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1ℎ𝑑𝑑𝑑𝑑[𝑡𝑡𝑡𝑡]  ∗  (1/𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻)        (5) 

 
3. Limitation of the maximum charging and discharging power 
and impossibility of charging and discharging at the same 
time: 
 
𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡]  <=  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑋𝑋𝑋𝑋[𝑡𝑡𝑡𝑡]         (6) 
𝑑𝑑𝑑𝑑ℎ[𝑡𝑡𝑡𝑡]  <=  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  (1 −  𝑋𝑋𝑋𝑋[𝑡𝑡𝑡𝑡])        (7) 
 
4. Limitation that energy cannot be bought and sold at the 
same time: 
 
𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]  < =  𝑀𝑀𝑀𝑀 ∗  𝑋𝑋𝑋𝑋𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]          (8) 
𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  < =  𝑀𝑀𝑀𝑀 ∗  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]          (9) 
𝑋𝑋𝑋𝑋𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]  +  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  <=  1         (10) 

 
Big number M (100,000) is used according to optimization 
practice in order to ensure that energy cannot be bought 
(charged) and sold (discharged) at the same time. 
 
IV. ANALYSIS OF BATTERY STORAGE IN DIFFERENT 

TYPES OF ENERGY COMMUNITIES 
 

A. Community 1 
Community 1 consists of consumption, production and a 

BESS, and the community is located in the area of Zagreb. 
Consumers are: 40 apartments/apartments, a restaurant and a 
parking lot with a charging station for electric vehicles. The 
production is from photovoltaic panels that are placed on the 
roofs of all the mentioned buildings. 
Figure 2 shows the community 1 and layout of photovoltaic 
panels.  

 
Fig. 2. – Community 1 
 

It is planned that each of the apartments consists of two 
bedrooms with one bathroom and a separate toilet and is 60m2 
in size in order to meet the requirements of the 4-star tourist 
apartment categorization. The apartments and the restaurant are 
open all year. Restaurant and restaurant roof area data were 
estimated in Solar Edge software and shown in Table 1. 
 

TABLE I 
AREAS OF BUILDINGS AND NUMBER OF PEOPLE IN 

COMMUNITY 1 
 

Object Surface area Number of people 
40 apartments/flats 2400 m² 160 
Restaurant 680 m² 350 
Total 3080 m² 510 

 
There are two charging stations (Siemens VersiCharge 7.2 

kW) in the parking lot, for which the estimated daily charging 
of two cars per charging station is 4 hours per charge. On a daily 
basis, the filling station consumes 115 kWh, while on an annual 
basis it consumes 42 MWh. The estimated annual consumption 
of electricity is 361.1 MWh. 

4 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] ∗ (𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 0.8 ∗ 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]) represents expenses reduced for  
income. 
The equation of balance between electricity consumption and 
production: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] == 𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃[𝑡𝑡𝑡𝑡] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] (2) 

 
Variables: 
B - purchased energy 
S - sold energy 
HP - thermal energy of the heat pump 
HPe - heat pump electricity 
ch - charging energy 
dch - energy discharge 
soe - battery charge status 
x - charge discharge binary 
XB - purchased energy binary 
XS - sold energy binary 
PV - production from photovoltaics 
HH1ee - electricity consumption 
HH1hd – heat demand 
 
Constants: 
𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ  =  0.95 =charge/discharge efficiency 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 = 3 =efficiency coefficient 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =battery discharge power 
𝐶𝐶𝐶𝐶 =  𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = maximum power of heat pumps 
 
In addition to consumption, production and price data, model 
constraints are also needed.  
 
The constraints are:    
 
1. State of charge of the batteries at the beginning and for all 
other hours: 
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[0] =  0           (3) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡 − 1] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ � 1
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2. The demand for thermal energy is met through heat pumps: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡]  =  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1ℎ𝑑𝑑𝑑𝑑[𝑡𝑡𝑡𝑡]  ∗  (1/𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻)        (5) 

 
3. Limitation of the maximum charging and discharging power 
and impossibility of charging and discharging at the same 
time: 
 
𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡]  <=  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑋𝑋𝑋𝑋[𝑡𝑡𝑡𝑡]         (6) 
𝑑𝑑𝑑𝑑ℎ[𝑡𝑡𝑡𝑡]  <=  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  (1 −  𝑋𝑋𝑋𝑋[𝑡𝑡𝑡𝑡])        (7) 
 
4. Limitation that energy cannot be bought and sold at the 
same time: 
 
𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]  < =  𝑀𝑀𝑀𝑀 ∗  𝑋𝑋𝑋𝑋𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]          (8) 
𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  < =  𝑀𝑀𝑀𝑀 ∗  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]          (9) 
𝑋𝑋𝑋𝑋𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]  +  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  <=  1         (10) 

 
Big number M (100,000) is used according to optimization 
practice in order to ensure that energy cannot be bought 
(charged) and sold (discharged) at the same time. 
 
IV. ANALYSIS OF BATTERY STORAGE IN DIFFERENT 

TYPES OF ENERGY COMMUNITIES 
 

A. Community 1 
Community 1 consists of consumption, production and a 

BESS, and the community is located in the area of Zagreb. 
Consumers are: 40 apartments/apartments, a restaurant and a 
parking lot with a charging station for electric vehicles. The 
production is from photovoltaic panels that are placed on the 
roofs of all the mentioned buildings. 
Figure 2 shows the community 1 and layout of photovoltaic 
panels.  

 
Fig. 2. – Community 1 
 

It is planned that each of the apartments consists of two 
bedrooms with one bathroom and a separate toilet and is 60m2 
in size in order to meet the requirements of the 4-star tourist 
apartment categorization. The apartments and the restaurant are 
open all year. Restaurant and restaurant roof area data were 
estimated in Solar Edge software and shown in Table 1. 
 

TABLE I 
AREAS OF BUILDINGS AND NUMBER OF PEOPLE IN 

COMMUNITY 1 
 

Object Surface area Number of people 
40 apartments/flats 2400 m² 160 
Restaurant 680 m² 350 
Total 3080 m² 510 

 
There are two charging stations (Siemens VersiCharge 7.2 

kW) in the parking lot, for which the estimated daily charging 
of two cars per charging station is 4 hours per charge. On a daily 
basis, the filling station consumes 115 kWh, while on an annual 
basis it consumes 42 MWh. The estimated annual consumption 
of electricity is 361.1 MWh. 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] ∗ (𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 0.8 ∗ 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]) represents expenses reduced for  
income. 
The equation of balance between electricity consumption and 
production: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] == 𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃[𝑡𝑡𝑡𝑡] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] (2) 

 
Variables: 
B - purchased energy 
S - sold energy 
HP - thermal energy of the heat pump 
HPe - heat pump electricity 
ch - charging energy 
dch - energy discharge 
soe - battery charge status 
x - charge discharge binary 
XB - purchased energy binary 
XS - sold energy binary 
PV - production from photovoltaics 
HH1ee - electricity consumption 
HH1hd – heat demand 
 
Constants: 
𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ  =  0.95 =charge/discharge efficiency 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 = 3 =efficiency coefficient 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =battery discharge power 
𝐶𝐶𝐶𝐶 =  𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = maximum power of heat pumps 
 
In addition to consumption, production and price data, model 
constraints are also needed.  
 
The constraints are:    
 
1. State of charge of the batteries at the beginning and for all 
other hours: 
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[0] =  0           (3) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡 − 1] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ � 1
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�   (4) 

 
2. The demand for thermal energy is met through heat pumps: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡]  =  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1ℎ𝑑𝑑𝑑𝑑[𝑡𝑡𝑡𝑡]  ∗  (1/𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻)        (5) 

 
3. Limitation of the maximum charging and discharging power 
and impossibility of charging and discharging at the same 
time: 
 
𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡]  <=  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑋𝑋𝑋𝑋[𝑡𝑡𝑡𝑡]         (6) 
𝑑𝑑𝑑𝑑ℎ[𝑡𝑡𝑡𝑡]  <=  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  (1 −  𝑋𝑋𝑋𝑋[𝑡𝑡𝑡𝑡])        (7) 
 
4. Limitation that energy cannot be bought and sold at the 
same time: 
 
𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]  < =  𝑀𝑀𝑀𝑀 ∗  𝑋𝑋𝑋𝑋𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]          (8) 
𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  < =  𝑀𝑀𝑀𝑀 ∗  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]          (9) 
𝑋𝑋𝑋𝑋𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]  +  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  <=  1         (10) 

 
Big number M (100,000) is used according to optimization 
practice in order to ensure that energy cannot be bought 
(charged) and sold (discharged) at the same time. 
 
IV. ANALYSIS OF BATTERY STORAGE IN DIFFERENT 

TYPES OF ENERGY COMMUNITIES 
 

A. Community 1 
Community 1 consists of consumption, production and a 

BESS, and the community is located in the area of Zagreb. 
Consumers are: 40 apartments/apartments, a restaurant and a 
parking lot with a charging station for electric vehicles. The 
production is from photovoltaic panels that are placed on the 
roofs of all the mentioned buildings. 
Figure 2 shows the community 1 and layout of photovoltaic 
panels.  

 
Fig. 2. – Community 1 
 

It is planned that each of the apartments consists of two 
bedrooms with one bathroom and a separate toilet and is 60m2 
in size in order to meet the requirements of the 4-star tourist 
apartment categorization. The apartments and the restaurant are 
open all year. Restaurant and restaurant roof area data were 
estimated in Solar Edge software and shown in Table 1. 
 

TABLE I 
AREAS OF BUILDINGS AND NUMBER OF PEOPLE IN 

COMMUNITY 1 
 

Object Surface area Number of people 
40 apartments/flats 2400 m² 160 
Restaurant 680 m² 350 
Total 3080 m² 510 

 
There are two charging stations (Siemens VersiCharge 7.2 

kW) in the parking lot, for which the estimated daily charging 
of two cars per charging station is 4 hours per charge. On a daily 
basis, the filling station consumes 115 kWh, while on an annual 
basis it consumes 42 MWh. The estimated annual consumption 
of electricity is 361.1 MWh. 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] ∗ (𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 0.8 ∗ 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]) represents expenses reduced for  
income. 
The equation of balance between electricity consumption and 
production: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] == 𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃[𝑡𝑡𝑡𝑡] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] (2) 

 
Variables: 
B - purchased energy 
S - sold energy 
HP - thermal energy of the heat pump 
HPe - heat pump electricity 
ch - charging energy 
dch - energy discharge 
soe - battery charge status 
x - charge discharge binary 
XB - purchased energy binary 
XS - sold energy binary 
PV - production from photovoltaics 
HH1ee - electricity consumption 
HH1hd – heat demand 
 
Constants: 
𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ  =  0.95 =charge/discharge efficiency 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 = 3 =efficiency coefficient 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =battery discharge power 
𝐶𝐶𝐶𝐶 =  𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = maximum power of heat pumps 
 
In addition to consumption, production and price data, model 
constraints are also needed.  
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1. State of charge of the batteries at the beginning and for all 
other hours: 
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[0] =  0           (3) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡 − 1] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ � 1

𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  < =  𝑀𝑀𝑀𝑀 ∗  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]          (9) 
𝑋𝑋𝑋𝑋𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡]  +  𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]  <=  1         (10) 

 
Big number M (100,000) is used according to optimization 
practice in order to ensure that energy cannot be bought 
(charged) and sold (discharged) at the same time. 
 
IV. ANALYSIS OF BATTERY STORAGE IN DIFFERENT 

TYPES OF ENERGY COMMUNITIES 
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Community 1 consists of consumption, production and a 

BESS, and the community is located in the area of Zagreb. 
Consumers are: 40 apartments/apartments, a restaurant and a 
parking lot with a charging station for electric vehicles. The 
production is from photovoltaic panels that are placed on the 
roofs of all the mentioned buildings. 
Figure 2 shows the community 1 and layout of photovoltaic 
panels.  
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It is planned that each of the apartments consists of two 
bedrooms with one bathroom and a separate toilet and is 60m2 
in size in order to meet the requirements of the 4-star tourist 
apartment categorization. The apartments and the restaurant are 
open all year. Restaurant and restaurant roof area data were 
estimated in Solar Edge software and shown in Table 1. 
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COMMUNITY 1 
 

Object Surface area Number of people 
40 apartments/flats 2400 m² 160 
Restaurant 680 m² 350 
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There are two charging stations (Siemens VersiCharge 7.2 

kW) in the parking lot, for which the estimated daily charging 
of two cars per charging station is 4 hours per charge. On a daily 
basis, the filling station consumes 115 kWh, while on an annual 
basis it consumes 42 MWh. The estimated annual consumption 
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Big number M (100,000) is used according to optimization 
practice in order to ensure that energy cannot be bought (charged) 
and sold (discharged) at the same time.

Iv. anaLYsIs of batterY storaGe In dIfferent 
tYPes of enerGY coMMunItIes

A. CommuNity 1
Community 1 consists of consumption, production and a BESS, 

and the community is located in the area of   Zagreb. Consumers are: 
40 apartments/apartments, a restaurant and a parking lot with a char-
ging station for electric vehicles. The production is from photovolta-
ic panels that are placed on the roofs of all the mentioned buildings. 
Figure 2 shows the community 1 and layout of photovoltaic panels. 

Fig. 2. Community 1

It is planned that each of the apartments consists of two be-
drooms with one bathroom and a separate toilet and is 60m2 
in size in order to meet the requirements of the 4-star tou-
rist apartment categorization. The apartments and the restau-
rant are open all year. Restaurant and restaurant roof area data 
were estimated in Solar Edge software and shown in Table 1. 

tabLe I

areas of buILdInGs and nuMber of PeoPLe In  
coMMunItY 1 

Object Surface area Number of people
40 apartments/flats 2400 m² 160
Restaurant 680 m² 350
Total 3080 m² 510

There are two charging stations (Siemens VersiCharge 7.2 kW) 
in the parking lot, for which the estimated daily charging of two 
cars per charging station is 4 hours per charge. On a daily basis, the 
filling station consumes 115 kWh, while on an annual basis it con-
sumes 42 MWh. The estimated annual consumption of electricity 
is 361.1 MWh.

Figure 3 shows energy consumption by month. The largest 
share of consumption for each month goes to heating and cooling. 

Fig. 3. Energy consumption in the community 1

The SolarEdge software tool was used to dimension producti-
on capacities. Estimated consumption and available roof area were 
taken into account. 209 photovoltaic panels were installed on the 
roof of the restaurant with an area of   680 m2, while 600 photovol-
taic panels were installed on the roofs of the apartments with an 
area of   2,400 m2, for a total of 809 photovoltaic panels. Solar Edge 
estimates production of 370 MWh annually. The simulated estima-
ted annual output of Community 1 PV from Renewables ninja is 
372 MWh which is slightly higher than consumption, but system 
operators have been more flexible in this regard over the years 
and the excess output should not cause problems. In the winter 
months consumption is significantly higher than production, while 
in the other months, except for the summer months, production 
is approximately equal to consumption or slightly higher. In the 
summer months, production is significantly higher than consump-
tion, which is shown in Figure 4.

Fig. 4. Consumption and production of electricity in community 1

The average electricity consumption of the community at night 
is 22 kWh/hour, which for a period of 8 hours amounts to 176 
kWh. The battery capacity that would enable autonomy at night 
is 200 kWh.

Figure 5 shows how many times per year the battery of 
community 1 is charged or discharged at maximum power (0.5C). 
In community 1, that number is 175. 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] ∗ (𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 0.8 ∗ 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡]) represents expenses reduced for  
income. 
The equation of balance between electricity consumption and 
production: 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] == 𝐵𝐵𝐵𝐵[𝑡𝑡𝑡𝑡] − 𝑆𝑆𝑆𝑆[𝑡𝑡𝑡𝑡] + 𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃[𝑡𝑡𝑡𝑡] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] (2) 

 
Variables: 
B - purchased energy 
S - sold energy 
HP - thermal energy of the heat pump 
HPe - heat pump electricity 
ch - charging energy 
dch - energy discharge 
soe - battery charge status 
x - charge discharge binary 
XB - purchased energy binary 
XS - sold energy binary 
PV - production from photovoltaics 
HH1ee - electricity consumption 
HH1hd – heat demand 
 
Constants: 
𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ  =  0.95 =charge/discharge efficiency 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 = 3 =efficiency coefficient 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =battery discharge power 
𝐶𝐶𝐶𝐶 =  𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = maximum power of heat pumps 
 
In addition to consumption, production and price data, model 
constraints are also needed.  
 
The constraints are:    
 
1. State of charge of the batteries at the beginning and for all 
other hours: 
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[0] =  0           (3) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡] = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝[𝑡𝑡𝑡𝑡 − 1] + 𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝ℎ[𝑡𝑡𝑡𝑡] ∗ � 1
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2. The demand for thermal energy is met through heat pumps: 
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3. Limitation of the maximum charging and discharging power 
and impossibility of charging and discharging at the same 
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practice in order to ensure that energy cannot be bought 
(charged) and sold (discharged) at the same time. 
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parking lot with a charging station for electric vehicles. The 
production is from photovoltaic panels that are placed on the 
roofs of all the mentioned buildings. 
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It is planned that each of the apartments consists of two 
bedrooms with one bathroom and a separate toilet and is 60m2 
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that the battery was "discharged" 390.5 times and the battery 
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78.101,97 kWh and charged energy is 78.222 kWh. If these 
numbers are divided by the battery capacity, it can be concluded 
that the battery was “discharged” 390.5 times and the battery 
was “charged” 391 times, which is a total of 390.5 cycles. 
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B. CommuNity 2
Community 2 consists of consumption, production and BESS, 

and the community is located on the island of Lošinj. Consumers 
are: a boutique hotel and an electric vehicle charging station. Pro-
duction is from photovoltaic panels that are placed on the covered 
parking lot and on the roof of the hotel. Figure 7 shows community 
2 and the layout of the photovoltaic panels. 

Although nPro software has a lot of possibilities for the purpo-
se of precise modeling of the consumption of individual objects, 
there is one drawback. The consumption of community 2 differs 
from the others because it is seasonal in nature. It is possible to 
change the hourly percentages for days of the week, weekends and 
holidays, but it is not possible to change these data by month, that 
is, in the case of community 2, to model seasonal consumption, 
but the hotel is viewed as if it works at full capacity all year round, 
which is not true. For the purpose of more precise modeling of 
community 2, the assumption of hotel capacity occupancy is given 
in Table 2.

tabLe II 
hoteL occuPancY caPacItY bY Month

Month Hotel occupancy rate [%]
January 0
February 0
March 30
April 50
May 70
June 90
July 100

August 100
September 90

October 70
November 50
December 30

In January and February, even though the hotel is not working, 
there is a minimum consumption of the cold operation, which is 
10% of the consumption that would be in those months. Electricity 
consumption in the other months is scaled depending on the occu-
pancy capacity of the hotel. 

The highest turnover of the hotel, and therefore consumption, 
is in the summer months. The estimated annual consumption of 
electricity for community 2 is 422.9 MWh, which is the highest 
consumption of all communities. This information is not surprising 
considering the nature of the facility and the content it offers. Fi-
gure 8 shows the consumption of electricity by month. The largest 
share of consumption goes to cooling.
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The production capacities are dimensioned in such a way 
that the annual production is approximately equal to the annual 
consumption. For this purpose, 459 photovoltaic panels were 
installed on the roof of the covered parking lot and the hotel, 
facing east, west and south. The estimated annual production 
from the community's photovoltaic panels is 255.9 MWh. 
Production is significantly lower than consumption due to the 
lack of roof space. Electricity production in the community is 
highest in the summer months, and it exceeds consumption in 
January, February and March, while in April it is approximately 
equal to consumption. Display in Figure 9. 
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Data on the surface of roofs and the surface of buildings 
were evaluated in the SolarEdge software. The hotel 
accommodates 160 people and employs 100 workers. Data on 
the area of the hotel and the number of people using the 
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Fig. 8. Energy consumption in the community 2

The production capacities are dimensioned in such a way 
that the annual production is approximately equal to the annual 
consumption. For this purpose, 459 photovoltaic panels were in-
stalled on the roof of the covered parking lot and the hotel, facing 
east, west and south. The estimated annual production from the 
community’s photovoltaic panels is 255.9 MWh. Production is si-
gnificantly lower than consumption due to the lack of roof space. 
Electricity production in the community is highest in the summer 
months, and it exceeds consumption in January, February and 
March, while in April it is approximately equal to consumption. 
Display in Figure 9.

Fig. 9. Electricity production and consumption of community 2

Data on the surface of roofs and the surface of buildings were 
evaluated in the SolarEdge software. The hotel accommodates 160 
people and employs 100 workers. Data on the area of   the hotel and 
the number of people using the community are given in Table 3.

tabLe III

areas of buILdInGs and nuMber of PeoPLe In the 
coMMunItY 2 

Object Surface area Number of people

Hotel 3,500 m² 260

As in Community 1, there are two charging stations for electric 
vehicles in the parking lot (Siemens VersiCharge 7.2 kW) which 
consume 42 MWh of electricity annually.  

The average electricity consumption of the community at night 
is 32 kWh/hour, which for a period of 8 hours amounts to 256 
kWh. The battery capacity that would enable autonomy at night is 
300 kWh.  

Figure 10 shows how many times per year the battery of 

community 2 is charged or discharged at maximum power (0.5C). 
In community 2, that number is 199. It is noticeable charging and 
discharging frequency 0.5C in months where production is greater 
or approximately equal to production.

Fig. 10. Charging and discharging at maximum power in community 2

Figure 11 shows the battery activity on January 7. The total 
annual discharged energy is 111.647 kWh and charged energy is 
111.827 kWh, which means that the battery was “discharged” 372 
times while the battery was “charged” 372 times, which is a total 
of 372 cycles.

Fig. 11. Battery activity on January 7th

C. CommuNity 3
Community 3 includes a school, gymnasium, and kindergar-

ten. The BESS shows significant benefits due to consistent con-
sumption patterns. Production is from photovoltaic panels that are 
placed on the roof of the sports hall and elementary school. Figure 
12 shows community 3.

Data on the surface of roofs and the surface of buildings were 
evaluated in the SolarEdge software. If an eight-year primary scho-
ol has 4 classes per year and an average of 30 students per class, 
that amounts to 960 students. Taking into account the teachers and 
all other employees of the school, it was estimated that 1,000 pe-
ople attend the school every day. In the kindergarten, there are 8 
educational groups of 20 children per group and two kindergarten 
teachers per group. In addition to other employees of the kinder-
garten, the estimated number of people in the kindergarten every 
day is 190. The area of   the primary school, kindergarten and sports 
hall and the number of people per community facility are shown 
in Table 4.
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As in Community 1, there are two charging stations for 
electric vehicles in the parking lot (Siemens VersiCharge 7.2 
kW) which consume 42 MWh of electricity annually.   

The average electricity consumption of the community at 
night is 32 kWh/hour, which for a period of 8 hours amounts to 
256 kWh. The battery capacity that would enable autonomy at 
night is 300 kWh.   

Figure 10 shows how many times per year the battery of 
community 2 is charged or discharged at maximum power 
(0.5C). In community 2, that number is 199. It is noticeable 
charging and discharging frequency 0.5C in months where 
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The estimated annual electricity consumption for 

community 3 is 417 MWh.  
Figure 13 shows energy consumption by month. As in every 

community, until now the largest share of consumption goes to 
heating and cooling, but in community 3 that share is 
significantly higher. The table shows that the highest 
consumption is in January, June and December. Considering 
the school summer holidays, it is expected that July and August 
are the months with the lowest consumption, along with April 
and September, when the needs for heating and cooling are 
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community 3 is 417 MWh.  
Figure 13 shows energy consumption by month. As in every 

community, until now the largest share of consumption goes to 
heating and cooling, but in community 3 that share is 
significantly higher. The table shows that the highest 
consumption is in January, June and December. Considering 
the school summer holidays, it is expected that July and August 
are the months with the lowest consumption, along with April 
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west and south. According to the simulation results of SolarEd-
ge, 392.49 kWp of DC power was installed, while the maximum 
achieved AC power of the power plant is 309 kW. According to 
the simulation, the power plant produces 443 MWh annually, Re-
newables.ninja-e production is somewhat different from the power 
plant’s product 413.4 MWh. Production and consumption of the 
community are shown in Figure 14.

Fig. 14. Production and consumption of electricity in community 3
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is 30.4 kWh/hour, which for a period of 8 hours amounts to 243.2 
kWh. Battery capacity that would enable autonomy at night is 250 
kWh.  

Figure 15 shows how many times per year the battery of 
community 3 is charged or discharged at maximum power. In 
community 3, that number is 171. It is noticed that the battery char-
ges or discharges 0.5 C less often in months when consumption is 
higher than production.

 
Fig. 15. Charging and discharging at maximum power in community 3

Figure 16 shows the activity of the battery on January 7. The 
total annual discharge energy is 96.386 kWh and charge energy is 
96.536 kWh, which means that the battery “discharged” 385 ti-
mes, while the battery was “charged” 386 times, which is a total 
of 385.5 cycles.
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consumption. For this purpose, 882 photovoltaic panels were 
placed on the roofs of elementary schools and sports halls, 
facing east, west and south. According to the simulation results 
of SolarEdge, 392.49 kWp of DC power was installed, while 
the maximum achieved AC power of the power plant is 309 kW. 
According to the simulation, the power plant produces 443 
MWh annually, Renewables.ninja-e production is somewhat 
different from the power plant's product 413.4 MWh. 
Production and consumption of the community are shown in 
Figure 14. 

 
Fig. 14. - Production and consumption of electricity in 
community 3 
 

The average electricity consumption of the community at 
night is 30.4 kWh/hour, which for a period of 8 hours amounts 
to 243.2 kWh. Battery capacity that would enable autonomy at 
night is 250 kWh.   

Figure 15 shows how many times per year the battery of 
community 3 is charged or discharged at maximum power. In 
community 3, that number is 171. It is noticed that the battery 
charges or discharges 0.5 C less often in months when 
consumption is higher than production. 

 
Fig. 15. – Charging and discharging at maximum power in 
community 3 
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Figure 17 shows the battery activity for one summer day. 
Lower electricity prices are observed at night, but this still does 
not prevent the battery from doing arbitrage on the price 
difference and bringing profit to the community. Charging of 
the battery in periods of lower prices and discharge in periods 
of higher prices is observed. 

 
Fig. 17. - Dependence of the state of charge of the battery in 
community 3 on the price of electricity on the date of August 
28th  
 
Figure 18 shows the activity of the battery for one winter day. 
There is one increase in prices per day during the period of peak 
consumption when citizens return home from work. During this 
period, the battery is discharged. 
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Fig. 16. Battery activity on January 7th

Figure 17 shows the battery activity for one summer day. 
Lower electricity prices are observed at night, but this still does 
not prevent the battery from doing arbitrage on the price difference 
and bringing profit to the community. Charging of the battery in 
periods of lower prices and discharge in periods of higher prices 
is observed.

Fig. 17. Dependence of the state of charge of the battery in community 3 
on the price of electricity on the date of August 28th 

Figure 18 shows the activity of the battery for one winter day. 
There is one increase in prices per day during the period of peak 
consumption when citizens return home from work. During this 
period, the battery is discharged.

 
Fig. 18. - Dependence of the state of charge of the battery in community 
3 on the price of electricity on the date of January 1st

D. ComPArisoN

Tables 5, 7, 9 show investment data for each community. The 
investment is roughly estimated based on the costs for the solar 
panels and the battery, and other costs are ignored.

Tables 6, 8, 9 show annual costs and electricity savings for all 
communities in 4 cases. Each row in those tables is one scenario: 
‘Only consumption’, Photovoltaic power plant, ‘PV battery system 
with unlimited battery charging/discharging’ and ‘PV battery 

system with the condition of battery state of charge between 20% 
and 80%’, so those tables have 4 rows with data.

The first case is when the community would be exclusively a 
consumer without of any production of energy or BESS. The cost 
of electricity for community without photovoltaic panels is calcu-
lated by adding up for each hour the hourly consumption multiple 
by electricity prices in that hour.

The second case is when the community would be with pro-
duction from photovoltaic panels, but still without a BESS. 

The third and fourth cases are for communities with the photo-
voltaic panels and with BESS. 

In our scenario, we created 4 cases in such a way that we dis-
tinguished the differences regarding the existence or non-existence 
of a solar power plant and BESS, but it is possible to extend the 
analysis to cases in which the difference regarding the consumer 
itself is considered. In reference [11] authors explored such a form 
of scenario, but such an analysis would be useful if we wanted 
to elaborate in more detail on one of our 3 communities and then 
we would also deal with the Performance Ratio (PR) of the power 
plant itself, but all this represents the potential for future work and 
future articles.

By installing the photovoltaic panels and by installing BESS, 
savings are expected considering that the community is not only 
a consumer but also a producer who can sell their surplus energy 
and use the stored energy later with the BESS.  Optimizing with 
the goal of minimal electricity costs, results were obtained in cases 
where the community uses a BESS. 

Two cases were considered, when the full battery capacity is 
used and when the battery state of charge is limited between 20% 
and 80% of the battery capacity.  

Community 1 electricity cost in case of battery charging and 
discharging restrictions is not significantly higher (1,300 euros per 
year) than the case when the battery does not have such limitati-
ons but the life of the battery is significantly extended by avoiding 
excessive charging and deep discharge, i.e. by maintaining a mo-
derate level of charge, which is not a negligible factor for batteries 
of this capacity and their prices so it is more profitable to extend 
the life of the battery than to save a few thousand euros per year. 
The cost difference of these two cases in Community 2 is slightly 
higher (approximately 3,000 euros per year), but still extending 
battery life is more profitable. The same conclusion was reached 
in community 3.

tabLe v

InvestMents In the coMMunItY 1 

Community 1 Number Price per panel 
[EUR]

Total price [EUR]

Panels 809 200 161,800

Capacity (kWh) Price for 100 kWh 
[EUR]

Battery 200 50,000 100,000
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Figure 15 shows how many times per year the battery of 
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community 3, that number is 171. It is noticed that the battery 
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consumption is higher than production. 
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Figure 16 shows the activity of the battery on January 7. The 
total annual discharge energy is 96.386 kWh and charge energy 
is 96.536 kWh, which means that the battery "discharged" 385 
times, while the battery was "charged" 386 times, which is a 
total of 385.5 cycles. 

 
Fig. 16. – Battery activity on January 7th 
 

Figure 17 shows the battery activity for one summer day. 
Lower electricity prices are observed at night, but this still does 
not prevent the battery from doing arbitrage on the price 
difference and bringing profit to the community. Charging of 
the battery in periods of lower prices and discharge in periods 
of higher prices is observed. 

 
Fig. 17. - Dependence of the state of charge of the battery in 
community 3 on the price of electricity on the date of August 
28th  
 
Figure 18 shows the activity of the battery for one winter day. 
There is one increase in prices per day during the period of peak 
consumption when citizens return home from work. During this 
period, the battery is discharged. 
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Fig. 18. - Dependence of the state of charge of the battery in 
community 3 on the price of electricity on the date of January 
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D. Comparison 
Tables 5, 7, 9 show investment data for each community. 

The investment is roughly estimated based on the costs for the 
solar panels and the battery, and other costs are ignored. 

Tables 6, 8, 9 show annual costs and electricity savings for 
all communities in 4 cases. Each row in those tables is one 
scenario: ‘Only consumption’, Photovoltaic power plant, ‘PV 
battery system with unlimited battery charging/discharging’ 
and ‘PV battery system with the condition of battery state of 
charge between 20% and 80%’, so those tables have 4 rows with 
data. 

The first case is when the community would be exclusively 
a consumer without of any production of energy or BESS. The 
cost of electricity for community without photovoltaic panels is 
calculated by adding up for each hour the hourly consumption 
multiple by electricity prices in that hour. 

The second case is when the community would be with 
production from photovoltaic panels, but still without a BESS.  

The third and fourth cases are for communities with the 
photovoltaic panels and with BESS.  

In our scenario, we created 4 cases in such a way that we 
distinguished the differences regarding the existence or non-
existence of a solar power plant and BESS, but it is possible to 
extend the analysis to cases in which the difference regarding 
the consumer itself is considered. In reference [11] authors 
explored such a form of scenario, but such an analysis would be 
useful if we wanted to elaborate in more detail on one of our 3 
communities and then we would also deal with the Performance 
Ratio (PR) of the power plant itself, but all this represents the 
potential for future work and future articles. 

By installing the photovoltaic panels and by installing 
BESS, savings are expected considering that the community is 
not only a consumer but also a producer who can sell their 
surplus energy and use the stored energy later with the BESS.  
Optimizing with the goal of minimal electricity costs, results 
were obtained in cases where the community uses a BESS.  

Two cases were considered, when the full battery capacity 
is used and when the battery state of charge is limited between 
20% and 80% of the battery capacity.   

Community 1 electricity cost in case of battery charging and 
discharging restrictions is not significantly higher (1,300 euros 
per year) than the case when the battery does not have such 
limitations but the life of the battery is significantly extended 
by avoiding excessive charging and deep discharge, i.e. by 
maintaining a moderate level of charge, which is not a 

negligible factor for batteries of this capacity and their prices so 
it is more profitable to extend the life of the battery than to save 
a few thousand euros per year. The cost difference of these two 
cases in Community 2 is slightly higher (approximately 3,000 
euros per year), but still extending battery life is more 
profitable. The same conclusion was reached in community 3. 

 
TABLE V 

INVESTMENTS IN THE COMMUNITY 1 
 

Community 1 Number Price per panel 
[EUR] 

Total price 
[EUR] 

Panels 809 200 161,800 
 Capacity 

(kWh) 
Price for 100 
kWh [EUR] 

 

Battery 200 50,000 100,000 
 

TABLE VI 
SAVINGS IN THE COMMUNITY 1 

 
Community 1 Costs 

[EUR] 
Saving 
[EUR] 

Saving 
[EUR] per 
capita 

Only consumption 
 

40,340 - - 

Photovoltaic power 
plant 
 

11,273 29,067 56.99 

PV battery system 
with unlimited 
battery 
charging/discharging 

4,264 36,076 70.74 

PV battery system 
with the condition of 
battery state of 
charge between 20% 
and 80% 
 

6,578 33,762 66.2 

 
For community 1, the investment in the form of photovoltaic 

panels amounts to 161,800 euros and an additional 100,000 
euros for the BESS. If the community 1 had only production 
without the possibility of storing electricity, the return on the 
investment is in 5.566 years (not taking into account panel 
degradation, inflation, accompanying costs, e.g. installation, 
etc.).  

The return on investment for the photovoltaic panels and 
BESS with unlimited charge/discharge of the battery is 7.257 
years (not considering battery degradation, etc.). The return on 
investment for the photovoltaic panels and BESS with the 
battery charge condition between 20% and 80% is 7.754 years. 

 
TABLE VII 

INVESTMENTS IN THE COMMUNITY 2 
Community 2 Number Price per panel 

[EUR] 
Total price 

[EUR] 
Panels 459 200 91,800 

 Capacity 
(kWh) 

Price for 100 
kWh [EUR] 

 

Battery 300 50,000 150,000 
 

TABLE VIII 
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tabLe vI

savInGs In the coMMunItY 1 

Community 1 Costs [EUR] Saving [EUR] Saving [EUR] 
per capita

Only consumption 40,340 - -

Photovoltaic power 
plant

11,273 29,067 56.99

PV battery system 
with unlimited battery 
charging/discharging

4,264 36,076 70.74

PV battery system 
with the condition of 

battery state of charge 
between 20% and 

80%

6,578 33,762 66.2

For community 1, the investment in the form of photovoltaic 
panels amounts to 161,800 euros and an additional 100,000 euros 
for the BESS. If the community 1 had only production without the 
possibility of storing electricity, the return on the investment is in 
5.566 years (not taking into account panel degradation, inflation, 
accompanying costs, e.g. installation, etc.). 

The return on investment for the photovoltaic panels and BESS 
with unlimited charge/discharge of the battery is 7.257 years (not 
considering battery degradation, etc.). The return on investment for 
the photovoltaic panels and BESS with the battery charge conditi-
on between 20% and 80% is 7.754 years.

tabLe vII

InvestMents In the coMMunItY 2

Community 2 Number Price per panel [EUR] Total price [EUR]

Panels 459 200 91,800

Capacity (kWh) Price for 100 kWh 
[EUR]

Battery 300 50,000 150,000

tabLe vIII

savInGs In the coMMunItY 

Community 2 Costs [EUR] Saving [EUR] Saving [EUR] per 
capita

Only consumption 41,776 - -

Photovoltaic 
power plant

20,585 21,191 81.5

PV battery system 
with unlimited 

battery charging/
discharging

11,365 30,411 116.97

PV battery system 
with the condition 
of battery state of 
charge between 
20% and 80%

14,314 27,462 105.62

For community 2, the investment in the form of photovoltaic 
panels amounts to 91,800 euros and an additional 150,000 euros 
for the BESS. If the community 2 had only production without 
the possibility of storing electricity, the return on the investment is 
in 4.33 years (not taking into account panel degradation, inflation, 
accompanying costs, e.g. installation, etc.). 

The return on investment for the photovoltaic panels and 
battery container with unlimited charge/discharge of the battery 
is 7,951 years (not considering battery degradation, etc.). The re-
turn on investment for the photovoltaic panels and BESS with the 
battery charge condition between 20% and 80% is 8,805 years.

tabLeIx 
InvestMents In the coMMunItY 3 

Community 3 Number Price per panel 
[EUR]

Total price [EUR]

Panels 882 200 176,400

Capacity (kWh) Price for 100 
kWh [EUR]

Battery 250 50,000 125,000

tabLe x 
savInGs In the coMMunItY 3

Community 3 Costs [EUR] Saving [EUR] Saving [EUR] 
per capita

Only consumption 45,215 - -

Photovoltaic power plant 12,222 32,993 27.73

PV battery system 
with unlimited battery 
charging/discharging

4,138 41,077 34.52

PV battery system with 
the condition of battery 
state of charge between 

20% and 80%

6,742 38,473 32.33

For community 3, the investment in the form of photovoltaic 
panels amounts to 176,400 euros and an additional 125,000 euros 
for the BESS. If the community 3 had only production without the 
possibility of storing electricity, the return on the investment is in 
5,347 years (not taking into account panel degradation, inflation, 
accompanying costs, e.g. installation, etc.). 

The return on investment for the photovoltaic panels and 
battery container with unlimited battery charging/discharging is 
7,337 years (not considering battery degradation, etc.). The re-
turn on investment for the photovoltaic panels and BESS with the 
battery charge condition between 20% and 80% is 7,834 years.

Table 11 shows the investment return times for all cases in all 
communities. The investment payback times are approximately 
the same for communities 1 and 3, while the investment payback 
time is slightly longer for community 2. Given the fact that the 
annual savings in community 2 are the least and that the inves-
tment payback time is the highest, i.e. less in other communities, 
it can be concluded that in communities 1 and 3 batteries will pay 
off more.

tabLe xI

InvestMent return tIMe In coMMunItIes 

Investment return time 
[year]

Community 1 Community 2 Community 3

Photovoltaic power plant 5.666 4.33 5.347

PV battery system 
with unlimited battery 
charging/discharging

7.257 7.951 7.337

PV battery system with 
the condition of battery 
state of charge between 

20% and 80%

7.754 8.805 7.834
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If, in addition to this data, the data on the activity of the battery 
and the way it is used are taken into account, a conclusion can be 
reached in which community is most profitable to install a BESS.  

Table 12 shows how many times a year the battery was charged 
and discharged and how many times the battery was charged or 
discharged at 0.5 C. The number of charges and discharges at 0.5 
C is observed for the reason that it is the most unfavorable way of 
charging and discharging the battery and thus the battery is consu-
med the most. Given that both numbers are smaller for community 
3 than community 1, it can be concluded that battery 3 has the 
highest chance of having the longest life and therefore the most 
worthwhile.

tabLe xII

nuMber of batterY charGInG and dIscharGInG 
and nuMber of 0.5c charGInG and dIscharGInG bY 

coMMunItIes

Community 1 Community 2 Community 3

Number of chargers and 
discharges (cycles) per 

year

390.5 372 385.5

Number of chargers and 
discharges at 0.5C

175 199 171

Ratio 0.2238 0.2675 0.2218

v. concLusIon

Energy communities offer innovative and sustainable 
approaches for the transformation of energy systems towards 
decentralisation, participation and environmental responsibility. 
Investments in BESS are still costly, but feasible with subsidies. 
Further research and technological advances are needed to make 
these concepts financially sustainable in the near future.

This concept promotes the local balancing of energy supply 
and demand, reduces greenhouse gas emissions and promotes 
sustainability. With the rapid development of renewable energy 
sources and energy storage technologies, energy communities are 
becoming important players in achieving energy independence 
and reducing dependence on traditional energy sources. The de-
velopment of information and communication technologies also 
supports innovative management solutions in the transition from 
the traditional inelastic to the modern energy system.

In order to realise all the benefits of this model, it is necessary 
to promote it through further legal frameworks, technological 
innovation and education to ensure fairness, transparency and effi-
ciency in the work of energy communities. By involving citizens 
in the decision-making process, creating favourable conditions for 
local initiatives and supporting the development of smart technolo-
gies, energy communities have the potential to become a key factor 
in the transition to a sustainable energy system.

Analysing the concepts of different types of energy communi-
ties explained in this paper, it can be concluded that investments 
in BESS are still extremely expensive, but feasible with the help 
of subsidies from the European Union. With further research and 
technological advances, these concepts will be financially feasible 
in the near future.

As mentioned in the introductory chapter, the high integration 
of photovoltaic power plants can cause the problem of overvoltage 
in the grid. This problem can be solved by using BESS, which are 
usually connected in parallel to the photovoltaic power plant. This 
issue is targeted as an extension and goal for future work. In additi-
on, more attention will be focussed on virtual energy communities.
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Regional Solar Irradiance Forecasting Using  
Multi-Camera Sky Imagery and Machine Learning 

Models
Alen Jakoplić, Dubravko Franković, Tomislav Plavšić, Branka Dobraš

Summary — With the increasing integration of photovoltaic (PV) 
systems into power grids, accurate short-term solar irradiance fore-
casting is essential for efficient energy management. This paper pre-
sents a machine learning model developed using a synthetic dataset 
designed to analyze the potential of multicamera sky imaging for re-
gional solar irradiance forecasting. The dataset, generated in a con-
trolled simulation environment, captures cloud dynamics and solar 
irradiance at multiple locations within a region. The proposed model 
utilizes sky images from multiple virtual cameras strategically posi-
tioned to provide spatially distributed observations. By combining 
image-based features with historical irradiance measurements, the 
model shows improved forecasting accuracy compared to single-cam-
era approaches. The results indicate that multi-camera systems better 
capture the spatial variability of cloud cover and allow the model to 
predict solar irradiance for locations without installed cameras. This 
research highlights the potential of multi-camera configurations for 
regional forecasting and provides valuable insights for grid operators 
and energy planners. The results support the adoption of distributed 
sky imaging networks as a practical approach to improve solar ir-
radiance predictions and ultimately contribute to the stability and 
reliability of solarpowered energy systems through improved forecast 
accuracy.

Keywords — Solar irradiance forecasting, photovoltaic systems, 
multi-camera sky imaging, renewable energy integration. 

I. IntroductIon

Photovoltaic power plants (PVPPs) are among the most wide-
ly used renewable energy power plants [1]. Their popularity 
stems from their ability to harness solar energy, an abun-

dant and inexhaustible resource while generating electricity with 
minimal environmental impact. Due to their lower environmental 
impact, research has recently focused on further improving solar 
cells in terms of efficiency, production costs, and durability. The 
constant advances in photovoltaic technology have led to higher 
efficiency, longer lifespan, and lower manufacturing costs, which 
have accelerated the use of PV systems worldwide. As a result, the 

share of PVPPs in the structure of production units in the energy 
sector is steadily increasing, making solar energy a cornerstone of 
the transition to cleaner energy systems [2]. 

The unpredictability of electricity generation from renewable 
energy sources, including solar energy, leads to voltage and fre-
quency fluctuations within the power grid, causing difficulties in its 
management [3]. These fluctuations are caused by sudden changes 
in solar radiation due to cloud movements, atmospheric conditions, 
and other meteorological factors. Changes in the availability of re-
newable energy can occur within very short periods, often only a 
few minutes, during which other, conventional power plants cannot 
adjust their output quickly enough. The inherently slow response 
of conventional power plants, such as coal or gas-fired power 
plants, exacerbates the imbalance between electricity generation 
and consumer demand. When the balance between generated and 
consumed electricity is disturbed, deviations from nominal voltage 
and frequency values occur, resulting in reduced quality of electri-
cal energy and potential damage to sensitive equipment [4], [5]. 

To mitigate the negative impact of renewable energy sources 
on the power grid, it is necessary to predict changes in the avail-
ability of these energy sources with a certain degree of accuracy. 
The highly dynamic nature of meteorological conditions makes 
accurate long-term cloud forecasting at a given location difficult 
[6]. Conventional meteorological models, while effective at larger 
scales, are often inadequate when applied to local cloud dynamics 
relevant to PV power prediction. A promising solution to this chal-
lenge is the short-term prediction of cloud cover at the observed 
location, typically 10 to 15 minutes in advance within a radius of 
2000 meters. Narrow spatial and temporal scales enable more ac-
curate prediction of cloud cover and thus better integration of solar 
energy into the grid and more effective planning of the operation of 
conventional power plants [7]. 

Implementing a reliable power generation forecasting system 
reduces the need for balancing power, i.e. the reserve power needed 
to compensate for deviations of renewable energy generation from 
the contracted schedule. More accurate forecasts consequently re-
duce the cost of integrating renewable energy sources into the elec-
tricity grid by minimizing the dependence on reserve power plants 
and ancillary services [8]. In addition, the reduction of production 
curtailments due to large fluctuations leads to higher efficiency of 
existing systems. This improved efficiency combined with lower 
integration costs not only benefits grid operators but also leads to 
lower electricity prices for consumers within the grid. In addition, 
improved forecasting capabilities support grid stability, reliability, 
and resilience, especially as the share of variable renewable en-
ergy sources continues to increase in modern power systems [9]. 
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Building on the existing foundation, this research focuses on the 
development of a short-term prediction model for solar radiation 
using a synthetic database. The main objective is to investigate 
the potential of using multiple sky cameras at different locations 
to predict solar irradiance on a regional scale. By using data from 
multiple cameras, the model can detect cloud patterns, movements, 
and shadow propagation, all of which have a significant impact on 
the production of photovoltaic power plants. The use of multiple 
cameras provides the model with a more comprehensive under-
standing of atmospheric dynamics, as the combination of different 
viewing angles enables better recognition of cloud formation and 
movement trends. 

The ability to forecast solar radiation regionally offers several 
advantages. It enables predictions for areas where no cameras are 
directly installed, extending the practical applications of the model 
beyond the monitored locations. This is particularly valuable for 
distributed PV systems, where individual installations may be 
spread over a larger geographical area. In addition, improved short-
term forecasting supports better grid management, as operators can 
anticipate fluctuations in solar power generation and implement 
necessary balancing measures more effectively. 

Ultimately, this study shows that it is possible to use multicam-
era configurations to improve short-term solar irradiance forecast-
ing at a regional level. The knowledge gained from this study con-
tributes to ongoing efforts to improve the integration of renewable 
energy sources into modern power systems and to support a more 
stable, efficient, and reliable use of solar energy. 

II. basIcs and MotIvatIon for reGIonaL soLar 
forecastInG ModeLs 

In recent years, with significant integration of PV power plants, 
mostly at lower voltage levels, accurate solar irradiance forecasting 
is becoming crucial for stable and secure power system operation. 
Solar irradiance forecasting is an input variable for two important 
power system operational planning processes: 

• PV production forecasting 

• Load forecasting 

While direct PV production forecasting is mainly used for PV 
power plants connected to the transmission voltage levels, load 
forecasting algorithms have an indirect forecast of PV generation 
connected to the distribution voltage levels embedded as a part of 
the overall forecasting function. While the load forecasting func-
tion is usually only performed as part of day-ahead operational 
planning processes, the forecast of renewable energy production is 
also performed in intra–day operational planning processes, usual-
ly one hour ahead. Such an approach is justified due to the sudden 
changes in local weather forecasts, which can have a significant 
impact on the production of PV and wind power plants. Ultra-
shortterm PV production forecasting 15 minutes ahead of real-
time could further improve the power system operation efficiency 
and security, enabling the operators in control centers to take the 
necessary preventive operational measures just ahead of real-time. 
This way, the operating personnel still have time to optimize power 
system operation, while if those measures were curative and done 
after the changes in the PV production have occurred, there would 
be much less room for optimized operational actions. 

Over the years, a large number of different methods and ap-
proaches have been developed to predict the production of PV 
systems [10]. These methods have evolved significantly due to 
the growing need for more accurate and reliable predictions to 
optimize grid operations and support the increasing share of so-
lar energy in modern power systems. The categorization of these 

methods is generally based on the type of input data, approaches 
to data pre-processing, temporal frequency of data collection, spa-
tial resolution, and temporal and spatial horizon [11]. In addition, 
factors such as the complexity of the model, the computational re-
quirements, and the availability of historical data play a crucial role 
in determining the effectiveness of these forecasting methods. 

An important aspect of forecasting the production of photovol-
taic power plants lies in the analysis of local weather conditions, 
especially solar radiation, whose fluctuations directly affect the 
output power and allow an accurate prediction of future produc-
tion. Solar radiation is the main factor influencing photovoltaic 
output, and its fluctuations are influenced by various atmospheric 
phenomena such as cloud cover, aerosols, and seasonal changes. 
Parameters such as wind speed, temperature, time of day, and rela-
tive humidity, on the other hand, have a much lower correlation 
with the production of photovoltaic systems. While these mete-
orological variables are useful for broader climatological analyses, 
they are often less relevant for short-term predictions. Such data 
are often subject to fluctuations due to various conditions, such as 
changes in wind direction and speed at different heights above the 
ground and the relative stability of temperature over a short period 
within a day [12]. Therefore, these parameters often require more 
complex models and algorithms for effective inclusion in forecast-
ing models.

The importance of short-term prediction of solar irradiance 
cannot be neglected when it comes to predicting the output power 
of photovoltaic power plants. This type of prediction is particularly 
important during periods of high solar variability, e.g. on partly 
cloudy days, when rapid changes in irradiance can lead to signifi-
cant fluctuations in PV output. The complexity of this task lies in 
the inherent randomness and non-linearity of solar radiation, which 
is particularly pronounced in changing weather conditions. Many 
scientific studies have emphasized the use of artificial neural net-
works (ANN) for such forecasting models due to their ability to 
adapt to complex and nonlinear patterns [13], [14]. These models 
use historical and real-time data to learn the intricate relationships 
between atmospheric conditions and solar radiation. Nevertheless, 
further refinement of these models in terms of accuracy and robust-
ness is needed [15], especially in scenarios with highly dynamic 
cloud formations. 

Fig. 1. Comparison of satellite and ground-based cloud motion vectors.

Forecasts of the output power of photovoltaic power plants are 
often based on satellite images and use models such as cloud mo-
tion vectors, as can be seen in Figure 1 on the left and right. These 
methods use historical cloud movement data to predict future ir-
radiance patterns. However, the limitations of these models, such 
as the assumption of constant cloud shapes and sensitivity to local 
weather conditions, make them less accurate [16]. While satellite 
images are beneficial for large-scale analyses, they often lack the 
spatial and temporal resolution needed for accurate short-term 
predictions. 

Accurate prediction of cloud changes over PVPPs requires de-
tailed data on the state of clouds, including their amount, position, 
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Fig. 1. Comparison of satellite and ground-based cloud motion vectors.

and non-linearity of solar radiation, which is particularly
pronounced in changing weather conditions. Many scientific
studies have emphasized the use of artificial neural networks
(ANN) for such forecasting models due to their ability to adapt
to complex and nonlinear patterns [13], [14]. These models use
historical and real-time data to learn the intricate relationships
between atmospheric conditions and solar radiation. Neverthe-
less, further refinement of these models in terms of accuracy
and robustness is needed [15], especially in scenarios with
highly dynamic cloud formations.

Forecasts of the output power of photovoltaic power plants
are often based on satellite images and use models such as
cloud motion vectors, as can be seen in Figure 1 on the left
and right. These methods use historical cloud movement data
to predict future irradiance patterns. However, the limitations
of these models, such as the assumption of constant cloud
shapes and sensitivity to local weather conditions, make them
less accurate [16]. While satellite images are beneficial for
large-scale analyses, they often lack the spatial and temporal
resolution needed for accurate short-term predictions.

Accurate prediction of cloud changes over PVPPs requires
detailed data on the state of clouds, including their amount,
position, and movement, which are usually obtained from
satellite and radar imagery [17]. However, due to the limited
temporal and spatial resolution of these images, they are often
not suitable for short-term predictions [18]. Ground-based sky
cameras equipped with wide-angle lenses and high-frequency
imaging offer a promising alternative for capturing cloud
dynamics in real-time. The development of new databases
containing more detailed information from sky photography
can significantly improve the accuracy of predictions, but high
equipment costs limit their application [19], [20].

Convolutional neural networks (CNNs) are particularly well
suited for detecting nonlinear relationships between input and
output data in models for short-term prediction of photovoltaic
power plant production. CNNs excel at processing visual
information and can automatically extract relevant features
from sky images without manual intervention. These networks
can recognize patterns in photographs so that they can use
these images as input data. Since photographs of the sky
above a photovoltaic power plant are directly correlated with
its output [21], convolutional neural networks can use these
photographs to discover correlations between sky images and
the output of photovoltaic power plants. By incorporating
additional meteorological data, CNNs can achieve even higher

forecasting accuracy, especially for short-term forecasts.
Based on the review of the available methods, it is con-

cluded that the accuracy of the models generated by convolu-
tional neural networks depends on the quality of the input data.
The availability of high-quality sky images in combination
with precise irradiance measurements plays a crucial role in
the training and validation of the models. This underlines
the importance of a detailed and comprehensive database that
would enable better training of the neural network and thus
a more accurate prediction of the production of photovoltaic
power plants.

The development of specialized databases for short-term
regional solar forecasting is essential for testing and validating
new model architectures. General or single-camera datasets
often fail to capture the spatial variability of cloud cover
over larger areas, which is critical for understanding cloud
dynamics and their impact on photovoltaic production. A cus-
tomized dataset that accounts for different weather conditions
and spatial configurations provides the necessary basis for
improving model performance and exploring novel approaches
for regional solar irradiance forecasting.

III. DEVELOPMENT OF A MULTI-CAMERA SOLAR
FORECASTING MODEL

The development of a reliable model for short-term solar
irradiance forecasting at a regional level requires an innovative
approach that takes into account the complex interactions
between atmospheric conditions and solar irradiance. In this
study, a synthetic database with data from multiple wide-
angle cameras is used to capture cloud movements and their
effects on solar radiation. This method enables the creation
of models capable of predicting solar irradiance for locations
without direct measurements by utilizing spatial relationships
and cloud dynamics.

A. Synthetic Data Set Simulation Framework

The synthetic database used in this study was created using
the Unity development platform, which was chosen for its
flexibility in generating realistic atmospheric scenarios and
simulating dynamic cloud behavior. Unity’s advanced 3D
rendering capabilities and real-time simulation tools enable the
accurate reproduction of sunlight behavior and cloud patterns
under different weather conditions.

To ensure the fidelity of the simulations, the High Definition
Render Pipeline (HDRP) was used. HDRP supports realistic
light interactions, which is essential for modeling variations
in solar radiation due to cloud cover, as can be seen in
Figure 2. The simulation framework consists of several user-
defined scripts that control environmental parameters such as
sun position, cloud density, cloud movement, and temporal
progression to replicate diurnal cycles.

Camera placement is calculated to cover key areas within
the simulation. A script assigns coordinates to each camera,
providing a variety of perspectives in the monitored region.
The cameras capture sky images at regular intervals, providing
a continuous stream of visual data that is essential for training
the forecasting model. The image resolution is set to 64x64
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and movement, which are usually obtained from satellite and radar 
imagery [17]. However, due to the limited temporal and spatial 
resolution of these images, they are often not suitable for short-
term predictions [18]. Ground-based sky cameras equipped with 
wide-angle lenses and high-frequency imaging offer a promising 
alternative for capturing cloud dynamics in real-time. The develop-
ment of new databases containing more detailed information from 
sky photography can significantly improve the accuracy of predic-
tions, but high equipment costs limit their application [19], [20]. 

Convolutional neural networks (CNNs) are particularly well 
suited for detecting nonlinear relationships between input and out-
put data in models for short-term prediction of photovoltaic power 
plant production. CNNs excel at processing visual information and 
can automatically extract relevant features from sky images with-
out manual intervention. These networks can recognize patterns 
in photographs so that they can use these images as input data. 
Since photographs of the sky above a photovoltaic power plant are 
directly correlated with its output [21], convolutional neural net-
works can use these photographs to discover correlations between 
sky images and the output of photovoltaic power plants. By incor-
porating additional meteorological data, CNNs can achieve even 
higher forecasting accuracy, especially for short-term forecasts. 

Based on the review of the available methods, it is concluded 
that the accuracy of the models generated by convolutional neural 
networks depends on the quality of the input data. The availability 
of high-quality sky images in combination with precise irradiance 
measurements plays a crucial role in the training and validation of 
the models. This underlines the importance of a detailed and com-
prehensive database that would enable better training of the neural 
network and thus a more accurate prediction of the production of 
photovoltaic power plants. 

The development of specialized databases for short-term re-
gional solar forecasting is essential for testing and validating new 
model architectures. General or single-camera datasets often fail 
to capture the spatial variability of cloud cover over larger areas, 
which is critical for understanding cloud dynamics and their impact 
on photovoltaic production. A customized dataset that accounts for 
different weather conditions and spatial configurations provides 
the necessary basis for improving model performance and explor-
ing novel approaches for regional solar irradiance forecasting. 

III. deveLoPMent 0f a MuLtI-caMera soLar 
forecastInG ModeL 

The development of a reliable model for short-term solar ir-
radiance forecasting at a regional level requires an innovative ap-
proach that takes into account the complex interactions between 
atmospheric conditions and solar irradiance. In this study, a syn-
thetic database with data from multiple wideangle cameras is used 
to capture cloud movements and their effects on solar radiation. 
This method enables the creation of models capable of predicting 
solar irradiance for locations without direct measurements by uti-
lizing spatial relationships and cloud dynamics. 

A. syNthetiC DAtA set simulAtioN frAmework 
The synthetic data base used in this study was created using 

the Unity development platform, which was chosen for its flex-
ibility in generating realistic atmospheric scenarios and simulating 
dynamic cloud behavior. Unity’s advanced 3D rendering capabili-
ties and real-time simulation tools enable the accurate reproduction 
of sunlight behavior and cloud patterns under different weather 
conditions. 

To ensure the fidelity of the simulations, the High Definition 
Render Pipeline (HDRP) was used. HDRP supports realistic light 
interactions, which is essential for modeling variations in solar ra-
diation due to cloud cover, as can be seen in Figure 2. The simula-
tion framework consists of several userdefined scripts that control 
environmental parameters such as sun position, cloud density, 
cloud movement, and temporal progression to replicate diurnal 
cycles. 

Camera placement is calculated to cover key areas within the 
simulation. A script assigns coordinates to each camera, provid-
ing a variety of perspectives in the monitored region. The cameras 
capture sky images at regular intervals, providing a continuous 
stream of visual data that is essential for training the forecasting 
model. The image resolution is set to 64x64 efficiency. However, 
the framework allows customization for higher resolutions. 

Fig. 2. Simulated cloud coverage over the target region generated using 
the Unity HDRP framework. The image illustrates the spatial distribution 
of clouds and the resulting shadows cast on the ground. The observed 
area is represented by the green square in the center, corresponding to a 
simulated surface of 50 × 50 kilometers.

Fig. 3. Sky Images from Different Perspectives: Central Camera 
(0,0) with Surrounding Cameras at (-5000,0), (5000,0), (0,5000), and 
(0,-5000).

The simulation process was tested on an M3 MacBook Air gen-
erating a single day’s data from five camera positions with images 
taken every five minutes took about two minutes. The resulting 
data set requires 8.1 MB of disk space, which underlines the scala-
bility of the system for larger simulations. The temporal resolution 
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Fig. 2. Simulated cloud coverage over the target region generated using
the Unity HDRP framework. The image illustrates the spatial distribution of
clouds and the resulting shadows cast on the ground. The observed area is
represented by the green square in the center, corresponding to a simulated
surface of 50 × 50 kilometers.

Fig. 3. Sky Images from Different Perspectives: Central Camera (0,0) with
Surrounding Cameras at (-5000,0), (5000,0), (0,5000), and (0,-5000).

pixels to achieve a balance between detail and computational
efficiency. However, the framework allows customization for
higher resolutions.

The simulation process was tested on an M3 MacBook
Air generating a single day’s data from five camera positions
with images taken every five minutes took about two minutes.
The resulting data set requires 8.1 MB of disk space, which
underlines the scalability of the system for larger simulations.
The temporal resolution is set to five minutes and provides
sufficient data granularity for short-term forecast models.
Shorter intervals, e.g. one minute, can be configured if required
to capture rapid changes in cloud cover.

The simulated area spans 50 x 50 km, with cameras
strategically placed in the center and four surrounding cameras
placed 5 km away in different directions to capture different
cloud perspectives, as shown in Figure 3. Each camera is
accompanied by light sensors that provide reference irradiance
measurements to ensure that the image features match the
irradiance data.

The database is publicly accessible via the Kaggle platform
[22], facilitating data sharing and collaboration between re-
searchers. The published dataset contains extensive metadata
and a total size of 5.1 GB, providing a rich resource for model
training and validation.

This simulation framework forms the basis for the devel-

opment of advanced models for short-term solar irradiance
forecasting. By incorporating multiple perspectives and dif-
ferent weather conditions, the model can more accurately
predict cloud-related variations in solar irradiance, supporting
more reliable and efficient photovoltaic power generation on
a regional scale.

B. Architecture Of The Neural Network

The development and training of the neural network model for
the short-term prediction of solar irradiance was performed
with Google Colab, using an L4 GPU for efficient parallel
processing. Google Colab provides a cloud-based environment
that simplifies access to computational resources without the
need for extensive local infrastructure. This platform was
chosen for its flexibility, ease of collaboration, and support
for GPU-accelerated machine learning workflows.

The synthetic dataset used to train the model includes 340
days of data, with measurements taken every five minutes
between 6:00 am and 6:00 pm. For each of the five sim-
ulated camera locations, the database contains hemispheric
sky images together with corresponding measurements of
available solar radiation. This setup provides a diverse and
dynamic dataset that reflects varying meteorological conditions
on different days and at different times. As illustrated in
Figure 4, the solar irradiance levels for five different locations
are shown for two randomly selected days, providing insight
into the temporal variations in solar radiation under different
meteorological conditions.

Prior to training, the data was pre-processed to improve the
performance of the model. The pre-processing steps included
normalizing the irradiance values and temporal features to
standardize the input distribution. Normalization is crucial
to accelerate the convergence of the model and improve the
stability of the training by ensuring that the input features have
similar scales.

A custom sequence generator was implemented to prepare
the data for training. This generator creates sequences of
nine consecutive images for each camera, with corresponding
irradiance measurements, timestamps, and camera coordinates.
Each sequence represents a 45-minute time window selected
based on the observed average time for cloud movement from
the edge to the center of the sky image. The target value for
the prediction is the irradiance at the center position (0.0) 15
minutes in the future, which corresponds to the third image
ahead of the input sequence.

The decision to use a 45-minute input sequence with a 15-
minute forecast horizon was guided by the dynamic character-
istics of cloud movement within the synthetic data set. In the
simulations, wind speeds vary daily and throughout the day.
However, the 45-minute window has been shown to capture the
predominant cloud movement patterns and allows the model
to learn the relationship between cloud dynamics and solar
irradiance variations.

The selection of these parameters was aimed at enabling a
meaningful performance analysis. Future research using real
data, which is currently unavailable due to a lack of databases
of sky images from multiple locations, will investigate the
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Fig. 2. Simulated cloud coverage over the target region generated using
the Unity HDRP framework. The image illustrates the spatial distribution of
clouds and the resulting shadows cast on the ground. The observed area is
represented by the green square in the center, corresponding to a simulated
surface of 50 × 50 kilometers.

Fig. 3. Sky Images from Different Perspectives: Central Camera (0,0) with
Surrounding Cameras at (-5000,0), (5000,0), (0,5000), and (0,-5000).

pixels to achieve a balance between detail and computational
efficiency. However, the framework allows customization for
higher resolutions.

The simulation process was tested on an M3 MacBook
Air generating a single day’s data from five camera positions
with images taken every five minutes took about two minutes.
The resulting data set requires 8.1 MB of disk space, which
underlines the scalability of the system for larger simulations.
The temporal resolution is set to five minutes and provides
sufficient data granularity for short-term forecast models.
Shorter intervals, e.g. one minute, can be configured if required
to capture rapid changes in cloud cover.

The simulated area spans 50 x 50 km, with cameras
strategically placed in the center and four surrounding cameras
placed 5 km away in different directions to capture different
cloud perspectives, as shown in Figure 3. Each camera is
accompanied by light sensors that provide reference irradiance
measurements to ensure that the image features match the
irradiance data.

The database is publicly accessible via the Kaggle platform
[22], facilitating data sharing and collaboration between re-
searchers. The published dataset contains extensive metadata
and a total size of 5.1 GB, providing a rich resource for model
training and validation.

This simulation framework forms the basis for the devel-

opment of advanced models for short-term solar irradiance
forecasting. By incorporating multiple perspectives and dif-
ferent weather conditions, the model can more accurately
predict cloud-related variations in solar irradiance, supporting
more reliable and efficient photovoltaic power generation on
a regional scale.

B. Architecture Of The Neural Network

The development and training of the neural network model for
the short-term prediction of solar irradiance was performed
with Google Colab, using an L4 GPU for efficient parallel
processing. Google Colab provides a cloud-based environment
that simplifies access to computational resources without the
need for extensive local infrastructure. This platform was
chosen for its flexibility, ease of collaboration, and support
for GPU-accelerated machine learning workflows.

The synthetic dataset used to train the model includes 340
days of data, with measurements taken every five minutes
between 6:00 am and 6:00 pm. For each of the five sim-
ulated camera locations, the database contains hemispheric
sky images together with corresponding measurements of
available solar radiation. This setup provides a diverse and
dynamic dataset that reflects varying meteorological conditions
on different days and at different times. As illustrated in
Figure 4, the solar irradiance levels for five different locations
are shown for two randomly selected days, providing insight
into the temporal variations in solar radiation under different
meteorological conditions.

Prior to training, the data was pre-processed to improve the
performance of the model. The pre-processing steps included
normalizing the irradiance values and temporal features to
standardize the input distribution. Normalization is crucial
to accelerate the convergence of the model and improve the
stability of the training by ensuring that the input features have
similar scales.

A custom sequence generator was implemented to prepare
the data for training. This generator creates sequences of
nine consecutive images for each camera, with corresponding
irradiance measurements, timestamps, and camera coordinates.
Each sequence represents a 45-minute time window selected
based on the observed average time for cloud movement from
the edge to the center of the sky image. The target value for
the prediction is the irradiance at the center position (0.0) 15
minutes in the future, which corresponds to the third image
ahead of the input sequence.

The decision to use a 45-minute input sequence with a 15-
minute forecast horizon was guided by the dynamic character-
istics of cloud movement within the synthetic data set. In the
simulations, wind speeds vary daily and throughout the day.
However, the 45-minute window has been shown to capture the
predominant cloud movement patterns and allows the model
to learn the relationship between cloud dynamics and solar
irradiance variations.

The selection of these parameters was aimed at enabling a
meaningful performance analysis. Future research using real
data, which is currently unavailable due to a lack of databases
of sky images from multiple locations, will investigate the
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is set to five minutes and provides sufficient data granularity for 
short-term forecast models. Shorter intervals, e.g. one minute, can 
be configured if required to capture rapid changes in cloud cover. 

The simulated area spans 50 x 50 km, with cameras strategi-
cally placed in the center and four surrounding cameras placed 5 
km away in different directions to capture different cloud perspec-
tives, as shown in Figure 3. Each camera is accompanied by light 
sensors that provide reference irradiance measurements to ensure 
that the image features match the irradiance data. 

The database is publicly accessible via the Kaggle platform 
[22], facilitating data sharing and collaboration between research-
ers. The published dataset contains extensive metadata and a total 
size of 5.1 GB, providing a rich resource for model training and 
validation. 

This simulation framework forms the basis for the develop-
ment of advanced models for short-term solar irradiance forecast-
ing. By incorporating multiple perspectives and different weather 
conditions, the model can more accurately predict cloud-related 
variations in solar irradiance, supporting more reliable and efficient 
photovoltaic power generation on a regional scale. 

B. ArChiteCture of the NeurAl Network 
The development and training of the neural network model for 

the short-term prediction of solar irradiance was performed with 
Google Colab, using an L4 GPU for efficient parallel processing. 
Google Colab provides a cloud-based environment that simplifies 
access to computational resources without the need for extensive 
local infrastructure. This platform was chosen for its flexibility, 
ease of collaboration, and support for GPU-accelerated machine 
learning workflows. 

The synthetic dataset used to train the model includes 340 days 
of data, with measurements taken every five minutes between 6:00 
am and 6:00 pm. For each of the five simulated camera locations, 
the database contains hemispheric sky images together with cor-
responding measurements of available solar radiation. This setup 
provides a diverse and dynamic dataset that reflects varying mete-
orological conditions on different days and at different times. As 
illustrated in Figure 4, the solar irradiance levels for five different 
locations are shown for two randomly selected days, providing in-
sight into the temporal variations in solar radiation under different 
meteorological conditions. 

Prior to training, the data was pre-processed to improve the 
performance of the model. The pre-processing steps included nor-
malizing the irradiance values and temporal features to standard-
ize the input distribution. Normalization is crucial to accelerate the 
convergence of the model and improve the stability of the training 
by ensuring that the input features have similar scales. 

A custom sequence generator was implemented to prepare 
the data for training. This generator creates sequences of nine 
consecutive images for each camera, with corresponding irradi-
ance measurements, timestamps, and camera coordinates. Each 
sequence represents a 45-minute time window selected based on 
the observed average time for cloud movement from the edge to 
the center of the sky image. The target value for the prediction 
is the irradiance at the center position (0.0) 15 minutes in the 
future, which corresponds to the third image ahead of the input 
sequence. 

The decision to use a 45-minute input sequence with a 15- 
minute forecast horizon was guided by the dynamic characteristics 
of cloud movement within the synthetic data set. In the simula-
tions, wind speeds vary daily and throughout the day. However, 
the 45-minute window has been shown to capture the predominant 

cloud movement patterns and allows the model to learn the rela-
tionship between cloud dynamics and solar irradiance variations.

 Fig. 4. Measured solar irradiance at five simulated locations on Day 266 
(top) and Day 124 (bottom). Each curve represents irradiance values 
recorded by a dedicated irradiance module colocated with one of the five 
virtual sky cameras positioned at coordinates (0, 0), (±5000, 0), and (0, 
±5000).

The selection of these parameters was aimed at enabling a 
meaningful performance analysis. Future research using real 
data, which is currently unavailable due to a lack of databases of 
sky images from multiple locations, will investigate the optimal 
length of input sequences and forecast horizons for regional solar 
forecasting. 

The neural network model developed for this study was de-
signed for short-term solar irradiance forecasting using data from 
multiple sky cameras together with numerical weather informa-
tion. The architecture integrates convolutional neural networks 
(CNNs) for image processing and fully connected layers for nu-
merical data, allowing the model to capture spatial cloud patterns 
and their relationship to solar radiation. 

As illustrated in Figure 5, the model accepts two different in-
puts: The first input consists of time-sequenced images from five 
cameras, one central reference camera, and four peripheral cam-
eras positioned around it. These images capture cloud movements 
and atmospheric conditions that influence solar irradiance. The 
second input comprises the corresponding meteorological param-
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Fig. 4. Measured solar irradiance at five simulated locations on Day 266
(top) and Day 124 (bottom). Each curve represents irradiance values recorded
by a dedicated irradiance module colocated with one of the five virtual sky
cameras positioned at coordinates (0, 0), (±5000, 0), and (0, ±5000).

optimal length of input sequences and forecast horizons for
regional solar forecasting.

The neural network model developed for this study was
designed for short-term solar irradiance forecasting using data
from multiple sky cameras together with numerical weather
information. The architecture integrates convolutional neural
networks (CNNs) for image processing and fully connected
layers for numerical data, allowing the model to capture spatial
cloud patterns and their relationship to solar radiation.

As illustrated in Figure 5, the model accepts two different
inputs: The first input consists of time-sequenced images from
five cameras, one central reference camera, and four peripheral
cameras positioned around it. These images capture cloud
movements and atmospheric conditions that influence solar
irradiance. The second input comprises the corresponding me-
teorological parameters, such as irradiance and cloud-related
features, for the same time intervals.

The image processing branch uses a TimeDistributed Con-
volutional Neural Network (CNN) to extract spatial features
from the sky images over the nine time steps. The network
consists of:

Fig. 5. Neural network architecture for regional solar forecasting.

• A series of three convolutional layers with filter sizes
of 16, 32, and 64, each using a 3x3 kernel and ReLU
activation

• Batch normalization layers after each convolutional layer
• Max-pooling layers to reduce spatial dimensions and

retain essential features
• TimeDistributed flattening and dense layers to capture

temporal dependencies
• A final dense layer with 256 units to combine the

extracted features across all time steps
The numerical data stream processes a feature set consisting

of the capture time and coordinates for each camera. This data
stream passes through:

• An initial flattening layer
• Two dense layers with 64 units each and ReLU activation
• Dropout layers with a dropout rate of 20 to prevent

overfitting
The outputs of the two branches are concatenated into a

combined feature vector that is further processed by:
• A dense layer with 256 units and ReLU activation
• A dropout layer with a dropout rate of 30
• Additional dense layers with 128 and 64 units
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eters, such as irradiance and cloud-related features, for the same 
time intervals. 

Fig. 5. Neural network architecture for regional solar forecasting.

The image processing branch uses a TimeDistributed Convo-
lutional Neural Network (CNN) to extract spatial features from the 
sky images over the nine time steps. The network consists of:  

• A series of three convolutional layers with filter sizes of 16, 
32, and 64, each using a 3x3 kernel and ReLU activation 

• Batch normalization layers after each convolutional layer 

• Max-pooling layers to reduce spatial dimensions and re-
tain essential features 

• TimeDistributed flattening and dense layers to capture 
temporal dependencies 

• A final dense layer with 256 units to combine the extracted 
features across all time steps 

The numerical data stream processes a feature set consisting of 
the capture time and coordinates for each camera. This data stream 
passes through: 

• An initial flattening layer 

• Two dense layers with 64 units each and ReLU activation 

• Dropout layers with a dropout rate of 20 to prevent 
overfitting

The outputs of the two branches are concatenated into a combi-

ned feature vector that is further processed by: 

• A dense layer with 256 units and ReLU activation 

• A dropout layer with a dropout rate of 30 

• Additional dense layers with 128 and 64 units 

• A final dense layer with a linear activation function to pre-
dict the future solar irradiance value 

The model was compiled with the Adam optimizer, mean 
squared error (MSE) as the loss function, and a custom R² met-
ric for performance evaluation. The training was performed with a 
batch size of 32 over 50 epochs. 

The dataset was split into training (80%), validation (10%), 
and test subsets (10%). During training, the model was exposed 
to a diverse range of cloud patterns and atmospheric conditions to 
improve its predictive capabilities for unseen data. 

To improve generalization and prevent overfitting, the training 
process employed early stopping with a patience of 10 epochs and 
model checkpointing, ensuring the retention of the best-perform-
ing model based on validation loss. The model includes a total of 
566,097 trainable parameters. 

Figure 6 shows the training and validation loss curves along 
with the validation R2 score throughout the 50 training epochs for 
scenario c) Camera-Free Target Location. The plot indicates stable 
convergence of the training loss, while fluctuations in the valida-
tion R2 metric reflect the challenging nature of the scenario, where 
no direct camera data from the target location is available. 

Fig. 6. Training and validation loss (MSE) and validation R2 score per 
epoch for scenario c) Camera-Free Target Location.

Iv. anaLYsIs of ModeL accuracY In reGIonaL 
soLar forecastInG 

To evaluate the performance and feasibility of the developed 
model for regional solar forecasting, three different scenarios were 
designed, as illustrated in Figure 7. Each scenario explores different 
configurations of camera input data to evaluate the impact of dif-
ferent perspectives on forecasting accuracy and to investigate the 
potential of predicting solar irradiance for unmonitored locations. 

In the first scenario (see Figure 7a), the model uses only the 
data from the central camera positioned at coordinates (0,0) to 
predict future solar irradiance at the same location. This scenario 
serves as a reference point against which the performance of the 
other scenarios can be compared. Since only a single camera is 
used, the model relies solely on the cloud movement patterns ob-
served from this single viewpoint. 

The second scenario (see Figure 7b) adds additional informa-
tion by including the images from the four peripheral cameras at 
(5000,0), (-5000,0), (0,5000), and (0,-5000) meters in addition to 
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Fig. 4. Measured solar irradiance at five simulated locations on Day 266
(top) and Day 124 (bottom). Each curve represents irradiance values recorded
by a dedicated irradiance module colocated with one of the five virtual sky
cameras positioned at coordinates (0, 0), (±5000, 0), and (0, ±5000).

optimal length of input sequences and forecast horizons for
regional solar forecasting.

The neural network model developed for this study was
designed for short-term solar irradiance forecasting using data
from multiple sky cameras together with numerical weather
information. The architecture integrates convolutional neural
networks (CNNs) for image processing and fully connected
layers for numerical data, allowing the model to capture spatial
cloud patterns and their relationship to solar radiation.

As illustrated in Figure 5, the model accepts two different
inputs: The first input consists of time-sequenced images from
five cameras, one central reference camera, and four peripheral
cameras positioned around it. These images capture cloud
movements and atmospheric conditions that influence solar
irradiance. The second input comprises the corresponding me-
teorological parameters, such as irradiance and cloud-related
features, for the same time intervals.

The image processing branch uses a TimeDistributed Con-
volutional Neural Network (CNN) to extract spatial features
from the sky images over the nine time steps. The network
consists of:

Fig. 5. Neural network architecture for regional solar forecasting.

• A series of three convolutional layers with filter sizes
of 16, 32, and 64, each using a 3x3 kernel and ReLU
activation

• Batch normalization layers after each convolutional layer
• Max-pooling layers to reduce spatial dimensions and

retain essential features
• TimeDistributed flattening and dense layers to capture

temporal dependencies
• A final dense layer with 256 units to combine the

extracted features across all time steps
The numerical data stream processes a feature set consisting

of the capture time and coordinates for each camera. This data
stream passes through:

• An initial flattening layer
• Two dense layers with 64 units each and ReLU activation
• Dropout layers with a dropout rate of 20 to prevent

overfitting
The outputs of the two branches are concatenated into a

combined feature vector that is further processed by:
• A dense layer with 256 units and ReLU activation
• A dropout layer with a dropout rate of 30
• Additional dense layers with 128 and 64 units
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• A final dense layer with a linear activation function to
predict the future solar irradiance value

The model was compiled with the Adam optimizer, mean
squared error (MSE) as the loss function, and a custom R²
metric for performance evaluation. The training was performed
with a batch size of 32 over 50 epochs.

The dataset was split into training (80%), validation (10%),
and test subsets (10%). During training, the model was ex-
posed to a diverse range of cloud patterns and atmospheric
conditions to improve its predictive capabilities for unseen
data.

To improve generalization and prevent overfitting, the train-
ing process employed early stopping with a patience of 10
epochs and model checkpointing, ensuring the retention of the
best-performing model based on validation loss. The model
includes a total of 566,097 trainable parameters.

Figure 6 shows the training and validation loss curves
along with the validation R2 score throughout the 50 training
epochs for scenario c) Camera-Free Target Location. The
plot indicates stable convergence of the training loss, while
fluctuations in the validation R2 metric reflect the challenging
nature of the scenario, where no direct camera data from the
target location is available.

Fig. 6. Training and validation loss (MSE) and validation R2 score per epoch
for scenario c) Camera-Free Target Location.

IV. ANALYSIS OF MODEL ACCURACY IN REGIONAL
SOLAR FORECASTING

To evaluate the performance and feasibility of the developed
model for regional solar forecasting, three different scenarios
were designed, as illustrated in Figure 7. Each scenario ex-
plores different configurations of camera input data to evaluate
the impact of different perspectives on forecasting accuracy
and to investigate the potential of predicting solar irradiance
for unmonitored locations.

In the first scenario (see Figure 7a), the model uses only
the data from the central camera positioned at coordinates
(0,0) to predict future solar irradiance at the same location.
This scenario serves as a reference point against which the
performance of the other scenarios can be compared. Since
only a single camera is used, the model relies solely on the
cloud movement patterns observed from this single viewpoint.

The second scenario (see Figure 7b) adds additional in-
formation by including the images from the four peripheral

Fig. 7. Evaluation scenarios for model performance. a) Single-Camera
Scenario, b) Multi-Camera Scenario, c) Camera-Free Target Location.

cameras at (5000,0), (-5000,0), (0,5000), and (0,-5000) meters
in addition to the data from the central camera. This config-
uration aims to determine whether the inclusion of multiple
viewpoints can improve prediction accuracy. The peripheral
cameras provide spatial context by capturing cloud motion
from multiple vantage points, allowing the model to better
understand the dynamics of cloud formation, breakup, and
movement in the region.

In the third and final scenario(see Figure 7c), the model
uses only the data from the four peripheral cameras to predict
solar irradiance at the central location (0,0). This scenario
is particularly important as it tests the model’s ability to
estimate solar irradiance for a location where there is no direct
monitoring device. The success of this approach would show
that the model can provide forecasts for locations without
installed cameras and thus support solar forecasting on a
regional scale.

The performance in these three scenarios provides insight
into the benefits of using multiple cameras for short-term solar
irradiance prediction. It also evaluates the model’s ability to
generalize spatial relationships between cloud structures and
irradiance patterns, providing valuable information for opti-
mizing the placement of cameras in real-world applications.

Figures 8, 9 and 10 show the results of the solar radia-
tion forecasts for all three evaluation scenarios. Each figure
compares the actual irradiance available at the target location
with the values predicted by the model. These visualizations
provide a clear understanding of how the model performs
under different input configurations and illustrate the impact
of including multiple cameras on prediction accuracy.

The results show that the model performs satisfactorily in
all three scenarios and effectively captures the relationship be-
tween cloud motion and solar irradiance variations. However,
the differences in the performance metrics reveal the additional
benefits of using multiple camera perspectives.

In the single-camera scenario (Scenario A), using only the
data from the central camera, the model achieved a R2 score
of 0.85. This scenario, illustrated in Figure 8, serves as a
baseline for comparison and indicates that the model is capable
of learning and predicting irradiation patterns to a reasonable
extent even with a single camera. However, the limitations of
using only one camera are obvious, as it provides a limited
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the data from the central camera. This configuration aims to deter-
mine whether the inclusion of multiple viewpoints can improve 
prediction accuracy. The peripheral cameras provide spatial con-
text by capturing cloud motion from multiple vantage points, al-
lowing the model to better understand the dynamics of cloud for-
mation, breakup, and movement in the region. 

Fig. 7. Evaluation scenarios for model performance. a) Single-Camera 
Scenario, b) Multi-Camera Scenario, c) Camera-Free Target Location.

In the third and final scenario (see Figure 7c), the model uses 
only the data from the four peripheral cameras to predict solar ir-
radiance at the central location (0,0). This scenario is particularly 
important as it tests the model’s ability to estimate solar irradiance 
for a location where there is no direct monitoring device. The suc-
cess of this approach would show that the model can provide fore-
casts for locations without installed cameras and thus support solar 
forecasting on a regional scale. 

The performance in these three scenarios provides insight into 
the benefits of using multiple cameras for short-term solar irradi-
ance prediction. It also evaluates the model’s ability to generalize 
spatial relationships between cloud structures and irradiance pat-
terns, providing valuable information for optimizing the placement 
of cameras in real-world applications. 

Figures 8, 9 and 10 show the results of the solar radiation fore-
casts for all three evaluation scenarios. Each figure compares the 
actual irradiance available at the target location with the values 
predicted by the model. These visualizations provide a clear un-
derstanding of how the model performs under different input con-
figurations and illustrate the impact of including multiple cameras 
on prediction accuracy. 

The results show that the model performs satisfactorily in all 
three scenarios and effectively captures the relationship between 
cloud motion and solar irradiance variations. However, the differ-
ences in the performance metrics reveal the additional benefits of 
using multiple camera perspectives. 

In the single-camera scenario (Scenario A), using only the 
data from the central camera, the model achieved a R2 score of 
0.85. This scenario, illustrated in Figure 8, serves as a baseline for 
comparison and indicates that the model is capable of learning and 
predicting irradiation patterns to a reasonable extent even with a 
single camera. However, the limitations of using only one camera 
are obvious, as it provides a limited perspective on cloud motion. 
Without additional viewpoints, the model lacks a comprehensive 
spatial context, leading to occasional discrepancies between the 
predicted and actual values. 

In contrast, the multi-camera scenario (Scenario B), which in-
cludes the images from all five cameras, significantly improves the 
prediction accuracy and leads to a R2 score of 0.87 as shown in 
Figure 9. The additional spatial context provided by the peripheral 
cameras allows the model to better understand cloud dynamics, 

shadow propagation, and irradiance variations. This improve-
ment demonstrates the benefit of multi-camera configurations as 
they allow the model to generalize more effectively across dif-
ferent weather conditions and improve short-term forecasting 
capabilities. 

Fig. 8. Predicted and actual solar irradiance values for the single-camera 
cenario (Scenario A) on Day 52. Only data from the central camera at 
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera 
scenario (Scenario B) on Day 52. The model utilizes image data from 
five spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free 
target location scenario (Scenario C) on Day 52. In this setup, the model 
predicts irradiance at the central location (0, 0) using only images from 
the four peripheral cameras.

The most critical test is the camera-free target location sce-
nario (Scenario C), where the model predicts solar irradiance at 
the central location without using direct images from that point. 
In this case, the model relies solely on the four peripheral cam-
eras to determine the irradiance at the target location. Despite the 
absence of a direct monitoring device, the model still achieves a 
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• A final dense layer with a linear activation function to
predict the future solar irradiance value

The model was compiled with the Adam optimizer, mean
squared error (MSE) as the loss function, and a custom R²
metric for performance evaluation. The training was performed
with a batch size of 32 over 50 epochs.

The dataset was split into training (80%), validation (10%),
and test subsets (10%). During training, the model was ex-
posed to a diverse range of cloud patterns and atmospheric
conditions to improve its predictive capabilities for unseen
data.

To improve generalization and prevent overfitting, the train-
ing process employed early stopping with a patience of 10
epochs and model checkpointing, ensuring the retention of the
best-performing model based on validation loss. The model
includes a total of 566,097 trainable parameters.

Figure 6 shows the training and validation loss curves
along with the validation R2 score throughout the 50 training
epochs for scenario c) Camera-Free Target Location. The
plot indicates stable convergence of the training loss, while
fluctuations in the validation R2 metric reflect the challenging
nature of the scenario, where no direct camera data from the
target location is available.

Fig. 6. Training and validation loss (MSE) and validation R2 score per epoch
for scenario c) Camera-Free Target Location.

IV. ANALYSIS OF MODEL ACCURACY IN REGIONAL
SOLAR FORECASTING

To evaluate the performance and feasibility of the developed
model for regional solar forecasting, three different scenarios
were designed, as illustrated in Figure 7. Each scenario ex-
plores different configurations of camera input data to evaluate
the impact of different perspectives on forecasting accuracy
and to investigate the potential of predicting solar irradiance
for unmonitored locations.

In the first scenario (see Figure 7a), the model uses only
the data from the central camera positioned at coordinates
(0,0) to predict future solar irradiance at the same location.
This scenario serves as a reference point against which the
performance of the other scenarios can be compared. Since
only a single camera is used, the model relies solely on the
cloud movement patterns observed from this single viewpoint.

The second scenario (see Figure 7b) adds additional in-
formation by including the images from the four peripheral

Fig. 7. Evaluation scenarios for model performance. a) Single-Camera
Scenario, b) Multi-Camera Scenario, c) Camera-Free Target Location.

cameras at (5000,0), (-5000,0), (0,5000), and (0,-5000) meters
in addition to the data from the central camera. This config-
uration aims to determine whether the inclusion of multiple
viewpoints can improve prediction accuracy. The peripheral
cameras provide spatial context by capturing cloud motion
from multiple vantage points, allowing the model to better
understand the dynamics of cloud formation, breakup, and
movement in the region.

In the third and final scenario(see Figure 7c), the model
uses only the data from the four peripheral cameras to predict
solar irradiance at the central location (0,0). This scenario
is particularly important as it tests the model’s ability to
estimate solar irradiance for a location where there is no direct
monitoring device. The success of this approach would show
that the model can provide forecasts for locations without
installed cameras and thus support solar forecasting on a
regional scale.

The performance in these three scenarios provides insight
into the benefits of using multiple cameras for short-term solar
irradiance prediction. It also evaluates the model’s ability to
generalize spatial relationships between cloud structures and
irradiance patterns, providing valuable information for opti-
mizing the placement of cameras in real-world applications.

Figures 8, 9 and 10 show the results of the solar radia-
tion forecasts for all three evaluation scenarios. Each figure
compares the actual irradiance available at the target location
with the values predicted by the model. These visualizations
provide a clear understanding of how the model performs
under different input configurations and illustrate the impact
of including multiple cameras on prediction accuracy.

The results show that the model performs satisfactorily in
all three scenarios and effectively captures the relationship be-
tween cloud motion and solar irradiance variations. However,
the differences in the performance metrics reveal the additional
benefits of using multiple camera perspectives.

In the single-camera scenario (Scenario A), using only the
data from the central camera, the model achieved a R2 score
of 0.85. This scenario, illustrated in Figure 8, serves as a
baseline for comparison and indicates that the model is capable
of learning and predicting irradiation patterns to a reasonable
extent even with a single camera. However, the limitations of
using only one camera are obvious, as it provides a limited
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Fig. 8. Predicted and actual solar irradiance values for the single-camera
scenario (Scenario A) on Day 52. Only data from the central camera at
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera
scenario (Scenario B) on Day 52. The model utilizes image data from five
spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free
target location scenario (Scenario C) on Day 52. In this setup, the model
predicts irradiance at the central location (0, 0) using only images from the
four peripheral cameras.

perspective on cloud motion. Without additional viewpoints,
the model lacks a comprehensive spatial context, leading to
occasional discrepancies between the predicted and actual
values.

In contrast, the multi-camera scenario (Scenario B), which
includes the images from all five cameras, significantly im-
proves the prediction accuracy and leads to a R2 score of
0.87 as shown in Figure 9. The additional spatial context

provided by the peripheral cameras allows the model to better
understand cloud dynamics, shadow propagation, and irradi-
ance variations. This improvement demonstrates the benefit
of multi-camera configurations as they allow the model to
generalize more effectively across different weather conditions
and improve short-term forecasting capabilities.

The most critical test is the camera-free target location
scenario (Scenario C), where the model predicts solar irradi-
ance at the central location without using direct images from
that point. In this case, the model relies solely on the four
peripheral cameras to determine the irradiance at the target
location. Despite the absence of a direct monitoring device,
the model still achieves a R2 score of 0.76 as is evident
from Figure 10., confirming that spatially distributed obser-
vations can successfully estimate irradiance for unmonitored
areas. Although the performance is slightly lower compared to
Scenario A and Scenario B, the results indicate that regional
solar forecasting is feasible even if cameras are not installed
at every location of interest.

Table I summarizes the R2 performance metrics for all three
scenarios shown in Figures 8–10. The single-camera scenario
(a) serves as a baseline, while the multi-camera configuration
(b) shows improved accuracy due to spatially enriched input.
The third scenario (c) still achieves satisfactory prediction
performance despite the exclusive use of peripheral cameras,
which supports the applicability of the model in cases where
direct sky images of the target location are not available.

TABLE I
PREDICTION PERFORMANCE ACROSS DIFFERENT FORECASTING

SCENARIOS.

Scenario Description R2 Score

a) Single-Camera Scenario Only central
camera 0.848

b) Multi-Camera Scenario Central + four
peripheral cameras 0.872

c) Camera-Free Target Location Only four
peripheral cameras 0.761

It is important to recognize the limitations associated with
using a purely synthetic dataset for this study. While the Unity
simulation framework allows for controlled experiments and
rapid generation of different scenarios, it inevitably simplifies
the complexity of real atmospheric physics. Factors such as
unpredictable, rapid weather changes beyond the simulated
patterns, variations in aerosol concentration, subtle cloud for-
mations (e.g. thin cirrus clouds), and potential sensor noise or
calibration issues with physical cameras are not fully captured
by the current synthetic data. While the presented results show
the potential and feasibility of the multi-camera approach
for regional forecasting, the achieved performance metrics
(R2 values) should be interpreted as an upper-bound estimate
under idealized conditions. Future work will focus on the
validation of this model using real data. It is planned to set
up a physical network of sky cameras in the target region to
collect real images and irradiance measurements. This real-
world data set will be crucial to thoroughly evaluate the
practical performance, robustness, and generalizability of the
model. It will allow the necessary fine-tuning and adjustment
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Fig. 8. Predicted and actual solar irradiance values for the single-camera
scenario (Scenario A) on Day 52. Only data from the central camera at
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera
scenario (Scenario B) on Day 52. The model utilizes image data from five
spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free
target location scenario (Scenario C) on Day 52. In this setup, the model
predicts irradiance at the central location (0, 0) using only images from the
four peripheral cameras.

perspective on cloud motion. Without additional viewpoints,
the model lacks a comprehensive spatial context, leading to
occasional discrepancies between the predicted and actual
values.

In contrast, the multi-camera scenario (Scenario B), which
includes the images from all five cameras, significantly im-
proves the prediction accuracy and leads to a R2 score of
0.87 as shown in Figure 9. The additional spatial context

provided by the peripheral cameras allows the model to better
understand cloud dynamics, shadow propagation, and irradi-
ance variations. This improvement demonstrates the benefit
of multi-camera configurations as they allow the model to
generalize more effectively across different weather conditions
and improve short-term forecasting capabilities.

The most critical test is the camera-free target location
scenario (Scenario C), where the model predicts solar irradi-
ance at the central location without using direct images from
that point. In this case, the model relies solely on the four
peripheral cameras to determine the irradiance at the target
location. Despite the absence of a direct monitoring device,
the model still achieves a R2 score of 0.76 as is evident
from Figure 10., confirming that spatially distributed obser-
vations can successfully estimate irradiance for unmonitored
areas. Although the performance is slightly lower compared to
Scenario A and Scenario B, the results indicate that regional
solar forecasting is feasible even if cameras are not installed
at every location of interest.

Table I summarizes the R2 performance metrics for all three
scenarios shown in Figures 8–10. The single-camera scenario
(a) serves as a baseline, while the multi-camera configuration
(b) shows improved accuracy due to spatially enriched input.
The third scenario (c) still achieves satisfactory prediction
performance despite the exclusive use of peripheral cameras,
which supports the applicability of the model in cases where
direct sky images of the target location are not available.

TABLE I
PREDICTION PERFORMANCE ACROSS DIFFERENT FORECASTING

SCENARIOS.

Scenario Description R2 Score

a) Single-Camera Scenario Only central
camera 0.848

b) Multi-Camera Scenario Central + four
peripheral cameras 0.872

c) Camera-Free Target Location Only four
peripheral cameras 0.761

It is important to recognize the limitations associated with
using a purely synthetic dataset for this study. While the Unity
simulation framework allows for controlled experiments and
rapid generation of different scenarios, it inevitably simplifies
the complexity of real atmospheric physics. Factors such as
unpredictable, rapid weather changes beyond the simulated
patterns, variations in aerosol concentration, subtle cloud for-
mations (e.g. thin cirrus clouds), and potential sensor noise or
calibration issues with physical cameras are not fully captured
by the current synthetic data. While the presented results show
the potential and feasibility of the multi-camera approach
for regional forecasting, the achieved performance metrics
(R2 values) should be interpreted as an upper-bound estimate
under idealized conditions. Future work will focus on the
validation of this model using real data. It is planned to set
up a physical network of sky cameras in the target region to
collect real images and irradiance measurements. This real-
world data set will be crucial to thoroughly evaluate the
practical performance, robustness, and generalizability of the
model. It will allow the necessary fine-tuning and adjustment
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Fig. 8. Predicted and actual solar irradiance values for the single-camera
scenario (Scenario A) on Day 52. Only data from the central camera at
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera
scenario (Scenario B) on Day 52. The model utilizes image data from five
spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free
target location scenario (Scenario C) on Day 52. In this setup, the model
predicts irradiance at the central location (0, 0) using only images from the
four peripheral cameras.

perspective on cloud motion. Without additional viewpoints,
the model lacks a comprehensive spatial context, leading to
occasional discrepancies between the predicted and actual
values.

In contrast, the multi-camera scenario (Scenario B), which
includes the images from all five cameras, significantly im-
proves the prediction accuracy and leads to a R2 score of
0.87 as shown in Figure 9. The additional spatial context

provided by the peripheral cameras allows the model to better
understand cloud dynamics, shadow propagation, and irradi-
ance variations. This improvement demonstrates the benefit
of multi-camera configurations as they allow the model to
generalize more effectively across different weather conditions
and improve short-term forecasting capabilities.

The most critical test is the camera-free target location
scenario (Scenario C), where the model predicts solar irradi-
ance at the central location without using direct images from
that point. In this case, the model relies solely on the four
peripheral cameras to determine the irradiance at the target
location. Despite the absence of a direct monitoring device,
the model still achieves a R2 score of 0.76 as is evident
from Figure 10., confirming that spatially distributed obser-
vations can successfully estimate irradiance for unmonitored
areas. Although the performance is slightly lower compared to
Scenario A and Scenario B, the results indicate that regional
solar forecasting is feasible even if cameras are not installed
at every location of interest.

Table I summarizes the R2 performance metrics for all three
scenarios shown in Figures 8–10. The single-camera scenario
(a) serves as a baseline, while the multi-camera configuration
(b) shows improved accuracy due to spatially enriched input.
The third scenario (c) still achieves satisfactory prediction
performance despite the exclusive use of peripheral cameras,
which supports the applicability of the model in cases where
direct sky images of the target location are not available.

TABLE I
PREDICTION PERFORMANCE ACROSS DIFFERENT FORECASTING

SCENARIOS.

Scenario Description R2 Score

a) Single-Camera Scenario Only central
camera 0.848

b) Multi-Camera Scenario Central + four
peripheral cameras 0.872

c) Camera-Free Target Location Only four
peripheral cameras 0.761

It is important to recognize the limitations associated with
using a purely synthetic dataset for this study. While the Unity
simulation framework allows for controlled experiments and
rapid generation of different scenarios, it inevitably simplifies
the complexity of real atmospheric physics. Factors such as
unpredictable, rapid weather changes beyond the simulated
patterns, variations in aerosol concentration, subtle cloud for-
mations (e.g. thin cirrus clouds), and potential sensor noise or
calibration issues with physical cameras are not fully captured
by the current synthetic data. While the presented results show
the potential and feasibility of the multi-camera approach
for regional forecasting, the achieved performance metrics
(R2 values) should be interpreted as an upper-bound estimate
under idealized conditions. Future work will focus on the
validation of this model using real data. It is planned to set
up a physical network of sky cameras in the target region to
collect real images and irradiance measurements. This real-
world data set will be crucial to thoroughly evaluate the
practical performance, robustness, and generalizability of the
model. It will allow the necessary fine-tuning and adjustment
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R2 score of 0.76 as is evident from Figure 10., confirming that 
spatially distributed observations can successfully estimate irradi-
ance for unmonitored areas. Although the performance is slightly 
lower compared to Scenario A and Scenario B, the results indicate 
that regional solar forecasting is feasible even if cameras are not 
installed at every location of interest. 

Table I summarizes the R2 performance metrics for all three 
scenarios shown in Figures 8–10. The single-camera scenario 
(a) serves as a baseline, while the multi-camera configuration (b) 
shows improved accuracy due to spatially enriched input. The third 
scenario (c) still achieves satisfactory prediction performance de-
spite the exclusive use of peripheral cameras, which supports the 
applicability of the model in cases where direct sky images of the 
target location are not available. 

tabLe I 

PredIctIon PerforMance across dIfferent forecastInG 
scenarIos. 

It is important to recognize the limitations associated with 
using a purely synthetic dataset for this study. While the Unity 
simulation framework allows for controlled experiments and rapid 
generation of different scenarios, it inevitably simplifies the com-
plexity of real atmospheric physics. Factors such as unpredictable, 
rapid weather changes beyond the simulated patterns, variations 
in aerosol concentration, subtle cloud formations (e.g. thin cirrus 
clouds), and potential sensor noise or calibration issues with physi-
cal cameras are not fully captured by the current synthetic data. 
While the presented results show the potential and feasibility of 
the multi-camera approach for regional forecasting, the achieved 
performance metrics (R2 values) should be interpreted as an upper-
bound estimate under idealized conditions. Future work will focus 
on the  validation of this model using real data. It is planned to set 
up a physical network of sky cameras in the target region to collect 
real images and irradiance measurements. This realworld data set 
will be crucial to thoroughly evaluate the practical performance, 
robustness, and generalizability of the model. It will allow the nec-
essary fine-tuning and adjustment to account for the inherent sto-
chasticity and complexity of actual atmospheric conditions. 

In addition to evaluating the forecasting accuracy, the practical 
feasibility of deploying a multi-camera system must also consider 
the cost of individual units. The proposed camera modules were 
designed using low-cost, off-the-shelf components with the goal 
of supporting scalable deployment. Table II summarizes the hard-
ware components and their associated costs, with the total price of 
one complete unit remaining below C60. This cost-effective con-
figuration, based on opensource platforms and simple solar power 
integration, makes the system suitable for distributed implemen-
tations in both research and real-world settings. The affordability 
and modularity of the setup support its application in community 
monitoring, smart grid demonstrations, and large-scale regional 
deployments. 

tabLe II 

coMPonent cost breakdown for f sInGLe skY caMera unIt 

(2023). 

 v. concLusIon 
The growing adoption of photovoltaic (PV) systems in mod-

ern energy grids presents both opportunities and challenges, par-
ticularly with regard to the variability of solar energy production. 
Accurate short-term forecasting of solar irradiance plays a crucial 
role in ensuring stable and efficient grid operation. This paper dem-
onstrates the potential of using a synthetic database in combination 
with a machine learning model to overcome these challenges by 
analyzing cloud dynamics using multiple sky cameras. 

The synthetic database developed in this study provides a 
controlled environment for testing different model configurations, 
weather conditions, and data structures. This flexibility allows sys-
tematic experimentation with different parameters to analyze the 
potential for regional solar irradiance forecasting. By using images 
from multiple cameras strategically distributed across the moni-
tored region, the model can detect patterns in cloud movement 
and shadow dynamics. The results show that the use of multiple 
cameras significantly improves forecasting accuracy compared to 
a single-camera setup. 

The performance evaluation across the three defined scenarios 
confirms that multiple perspectives contribute to more accurate 
predictions, not only for locations with installed cameras but also 
for locations without direct visual input. The model has success-
fully demonstrated that it is able to predict solar irradiance at the 
central target location using only the data from the peripheral cam-
eras. This finding highlights the potential of a distributed camera 
network to support regional solar forecasting without the need for 
a dense sensor installation. 

The results show that using multiple cameras gives the model 
a more detailed understanding of cloud dynamics, which in turn 
improves forecast accuracy. By capturing cloud movement from 
different angles, the model gains insight into shadow behavior 
and irradiance variations. This capability is particularly use-
ful for forecasting production at locations without direct camera 
measurements. 

In addition, the synthetic database supports the simulation of 
camera placements in real regions, enabling the development of 
optimal configurations for specific locations. This approach makes 
it possible to train the model in a synthetic environment and then 
reconcile it with real data. As the synthetic database can be created 
much faster than collecting real data (in minutes rather than days) 
it provides a practical and efficient solution for testing different 
configurations. Once the model has been trained in this flexible en-
vironment, it captures the dependencies between cloud movement 
and shadow formation, reducing the amount of real data needed to 
fine-tune it to the actual meteorological conditions at the selected 
location. 
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Fig. 8. Predicted and actual solar irradiance values for the single-camera
scenario (Scenario A) on Day 52. Only data from the central camera at
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera
scenario (Scenario B) on Day 52. The model utilizes image data from five
spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free
target location scenario (Scenario C) on Day 52. In this setup, the model
predicts irradiance at the central location (0, 0) using only images from the
four peripheral cameras.

perspective on cloud motion. Without additional viewpoints,
the model lacks a comprehensive spatial context, leading to
occasional discrepancies between the predicted and actual
values.

In contrast, the multi-camera scenario (Scenario B), which
includes the images from all five cameras, significantly im-
proves the prediction accuracy and leads to a R2 score of
0.87 as shown in Figure 9. The additional spatial context

provided by the peripheral cameras allows the model to better
understand cloud dynamics, shadow propagation, and irradi-
ance variations. This improvement demonstrates the benefit
of multi-camera configurations as they allow the model to
generalize more effectively across different weather conditions
and improve short-term forecasting capabilities.

The most critical test is the camera-free target location
scenario (Scenario C), where the model predicts solar irradi-
ance at the central location without using direct images from
that point. In this case, the model relies solely on the four
peripheral cameras to determine the irradiance at the target
location. Despite the absence of a direct monitoring device,
the model still achieves a R2 score of 0.76 as is evident
from Figure 10., confirming that spatially distributed obser-
vations can successfully estimate irradiance for unmonitored
areas. Although the performance is slightly lower compared to
Scenario A and Scenario B, the results indicate that regional
solar forecasting is feasible even if cameras are not installed
at every location of interest.

Table I summarizes the R2 performance metrics for all three
scenarios shown in Figures 8–10. The single-camera scenario
(a) serves as a baseline, while the multi-camera configuration
(b) shows improved accuracy due to spatially enriched input.
The third scenario (c) still achieves satisfactory prediction
performance despite the exclusive use of peripheral cameras,
which supports the applicability of the model in cases where
direct sky images of the target location are not available.

TABLE I
PREDICTION PERFORMANCE ACROSS DIFFERENT FORECASTING

SCENARIOS.

Scenario Description R2 Score

a) Single-Camera Scenario Only central
camera 0.848

b) Multi-Camera Scenario Central + four
peripheral cameras 0.872

c) Camera-Free Target Location Only four
peripheral cameras 0.761

It is important to recognize the limitations associated with
using a purely synthetic dataset for this study. While the Unity
simulation framework allows for controlled experiments and
rapid generation of different scenarios, it inevitably simplifies
the complexity of real atmospheric physics. Factors such as
unpredictable, rapid weather changes beyond the simulated
patterns, variations in aerosol concentration, subtle cloud for-
mations (e.g. thin cirrus clouds), and potential sensor noise or
calibration issues with physical cameras are not fully captured
by the current synthetic data. While the presented results show
the potential and feasibility of the multi-camera approach
for regional forecasting, the achieved performance metrics
(R2 values) should be interpreted as an upper-bound estimate
under idealized conditions. Future work will focus on the
validation of this model using real data. It is planned to set
up a physical network of sky cameras in the target region to
collect real images and irradiance measurements. This real-
world data set will be crucial to thoroughly evaluate the
practical performance, robustness, and generalizability of the
model. It will allow the necessary fine-tuning and adjustment
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to account for the inherent stochasticity and complexity of
actual atmospheric conditions.

In addition to evaluating the forecasting accuracy, the prac-
tical feasibility of deploying a multi-camera system must also
consider the cost of individual units. The proposed camera
modules were designed using low-cost, off-the-shelf compo-
nents with the goal of supporting scalable deployment. Table II
summarizes the hardware components and their associated
costs, with the total price of one complete unit remaining
below C60. This cost-effective configuration, based on open-
source platforms and simple solar power integration, makes
the system suitable for distributed implementations in both
research and real-world settings. The affordability and modu-
larity of the setup support its application in community mon-
itoring, smart grid demonstrations, and large-scale regional
deployments.

TABLE II
COMPONENT COST BREAKDOWN FOR A SINGLE SKY CAMERA UNIT

(2023).

Component Description Price [C]

Raspberry Pi Camera Wide-angle camera
compatible with Raspberry Pi 18.32

Raspberry Pi Zero W Mini computer
(single-board) 27.50

Small Solar Panel 5V, 0.125 W
(45 × 25 mm) 1.59

INA219 Module Current and voltage
measurement module 7.30

3D-Printed Housing Protective enclosure 0.89
Mounting Clamp For camera mounting 1.31

Total 56.91

V. CONCLUSION

The growing adoption of photovoltaic (PV) systems in modern
energy grids presents both opportunities and challenges, partic-
ularly with regard to the variability of solar energy production.
Accurate short-term forecasting of solar irradiance plays a
crucial role in ensuring stable and efficient grid operation. This
paper demonstrates the potential of using a synthetic database
in combination with a machine learning model to overcome
these challenges by analyzing cloud dynamics using multiple
sky cameras.

The synthetic database developed in this study provides a
controlled environment for testing different model configura-
tions, weather conditions, and data structures. This flexibility
allows systematic experimentation with different parameters
to analyze the potential for regional solar irradiance fore-
casting. By using images from multiple cameras strategically
distributed across the monitored region, the model can detect
patterns in cloud movement and shadow dynamics. The results
show that the use of multiple cameras significantly improves
forecasting accuracy compared to a single-camera setup.

The performance evaluation across the three defined sce-
narios confirms that multiple perspectives contribute to more
accurate predictions, not only for locations with installed
cameras but also for locations without direct visual input.
The model has successfully demonstrated that it is able to
predict solar irradiance at the central target location using only

the data from the peripheral cameras. This finding highlights
the potential of a distributed camera network to support
regional solar forecasting without the need for a dense sensor
installation.

The results show that using multiple cameras gives the
model a more detailed understanding of cloud dynamics,
which in turn improves forecast accuracy. By capturing cloud
movement from different angles, the model gains insight into
shadow behavior and irradiance variations. This capability
is particularly useful for forecasting production at locations
without direct camera measurements.

In addition, the synthetic database supports the simulation of
camera placements in real regions, enabling the development
of optimal configurations for specific locations. This approach
makes it possible to train the model in a synthetic environment
and then reconcile it with real data. As the synthetic database
can be created much faster than collecting real data (in
minutes rather than days) it provides a practical and efficient
solution for testing different configurations. Once the model
has been trained in this flexible environment, it captures the
dependencies between cloud movement and shadow formation,
reducing the amount of real data needed to fine-tune it to the
actual meteorological conditions at the selected location.

This research underlines the importance of flexible, data-
efficient approaches to renewable energy forecasting. The
method presented not only demonstrates the feasibility of
regional predictions of solar irradiance but also highlights the
potential of multi-camera systems for accurate forecasting over
larger areas. By enabling predictions on a regional scale, this
work provides a solid foundation for future advances in solar
energy forecasting and its practical implementation in power
grid operations.

Future research will focus on deploying the camera modules
in real-world environments and collecting observational data
to validate the model’s forecasting capabilities under actual
atmospheric conditions. The ultimate goal is to enable reliable,
region-wide solar irradiance forecasting based on a distributed
network of low-cost sky imagers. The synthetic framework and
results presented in this study provide a robust foundation for
this transition and serve as a critical preparatory step toward
real-world implementation.
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This research underlines the importance of flexible, dataeffi-
cient approaches to renewable energy forecasting. The method pre-
sented not only demonstrates the feasibility of regional predictions 
of solar irradiance but also highlights the potential of multi-camera 
systems for accurate forecasting over larger areas. By enabling pre-
dictions on a regional scale, this work provides a solid foundation 
for future advances in solar energy forecasting and its practical im-
plementation in power grid operations. 

Future research will focus on deploying the camera modules in 
real-world environments and collecting observational data to vali-
date the model’s forecasting capabilities under actual atmospheric 
conditions. The ultimate goal is to enable reliable, region-wide 
solar irradiance forecasting based on a distributed network of low-
cost sky imagers. The synthetic framework and results presented in 
this study provide a robust foundation for this transition and serve 
as a critical preparatory step toward real-world implementation. 
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