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Transformer Transient Analysis
Bruno Jurišić, Zvonimir Jurković, Tomislav Župan, Mladen Marković

Summary — The paper describes a high-frequency model for tran-
sient calculation in transformer windings with segmentation on a 
turn level. The windings are represented by lumped RLC parameters 
given by the analytical approach, whereas the model is solved in the 
time domain. The accuracy of the analytical calculation is improved 
with correction factors obtained with a set of numerical calculations. 
The presented model is verified by measurements on the example of 
power transformer disc winding.

Keywords — transformer, transients, high-frequency model, in-
ductance, capacitance. 

I. Introduction

One of the key factors influencing the reliability and lifespan 
of power transformers is the quality and proper dimensi-
oning of their insulation. In addition to nominal voltages, 

power transformers are susceptible to overvoltages resulting from 
lightning strikes or switching operations. During such events, the 
dielectric stress in insulation can be significantly increased. A pro-
perly designed insulation must withstand the impulse voltages 
according to international standards [1]. To dimension insulation 
properly during the insulation design phase, overvoltages and 
voltages inside transformer have to be calculated using suitable 
models.

Internal transient overvoltages within power transformers are 
typically calculated using white-box high-frequency models [2]. 
In these models, the windings are represented by lumped RLC 
parameters, which are calculated using analytical or numerical 
methods [3]. After modeling the winding using RLC parameters, 
i.e. electrical circuit, the resulting system of Kirchhoff equations is 
solved, either in the time or frequency domain. In the high-frequ-
ency model, the windings are segmented into elements, which can 
range from the entire winding down to the level of individual discs 
or turns. In the proposed model, windings are modeled at the turn 
level, which increases the accuracy of the model and enables direct 
calculation of detailed distribution of voltage within the winding. 
According to the reference [4], the valid frequency range of the 
high-frequency model is related to the length of the segments. The 
length of the segment should be at least four times smaller than the 
wavelength that corresponds to the highest frequency. The radius 
of the power transformer winding is typically up to one meter. The-

refore, the valid frequency range of the proposed model is approxi-
mately 10 MHz.

The calculation of RLC parameters is presented in Section II. 
The segmentation of the windings on a turn level implies the calcu-
lation of inductances (self and mutual), resistances and capacitan-
ces for each winding turn. There can be over thousands of turns in 
transformer windings, so methods that enable fast calculation are 
used. Capacitances are calculated using the analytical formulas and 
correction factors based on numerous 2D FEM calculations [5]. 
The inductances are calculated using the semi-analytical approach, 
based on work presented in papers [6-7]. The expressions given 
in these papers do not include infinite series [8], complex mathe-
matical functions such as Bessel, Struve, and Legendre functions 
[9-10], or elliptic integrals [11]. Numerical integration, required in 
papers [6-7], is avoided by introducing the approximation of inte-
gral. The resistances, representing losses caused by skin and proxi-
mity effect, are calculated using the simple analytical formulas that 
can be found in the literature [12-13]. The model for magnetic field 
calculation, required for proximity loss calculation, is derived from 
Biot-Savart law. To validate the proposed model, a comparison is 
made against measurements conducted on the power transformer 
winding model, with details of the measurement setup shown in 
Section III and results presented in Section IV.

II. Transformer Model
The calculation of RLC parameters is presented in this section. 

The inductances and resistances are calculated using an air-core 
model that ignores the permeable core. This assumption is valid for 
calculation of high frequency overvoltages [4]. The capacitances 
are calculated using simple analytical formulas for plate capacitors 
and correction factors based on numerous 2D FEM calculations. 
After modeling the winding using the lumped RLC parameters, the 
nodal analysis in time domain is performed using the well-establis-
hed Dommel’s method [14]. 

A. Capacitance
The capacitances between winding turns are calculated using 

the approach presented in reference [5]. The turn-to-turn capacitan-
ces are calculated between adjacent turns with significant capaci-
tive coupling using simple analytical formulas for plate and cylin-
drical capacitors. Above-mentioned analytical formulas assume 
simplified geometry and homogeneous electric field which lead to 
inaccurate results. Therefore, correction factors, based on numero-
us 2D FEM calculations, are introduced to improve accuracy.

Permittivities of oil, paper and spacers are considered using the 
equivalent permittivity. It is important to emphasize that influence 
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of additional materials inside transformer winding, such as spacers, 
on overvoltage waveforms is not negligible.  

B. Inductance
The mutual inductance of two coaxial coils with rectangular 

cross-sections can be calculated as a linked flux in one coil, whe-
reas there is a current of one ampere in the other coil (source of 
magnetic flux). The linked flux can be calculated from vector ma-
gnetic potential using the expression:

(1)

whereas the vector magnetic potential is related to the sour-
ce current by integral of Green’s function for vector magnetic 
potential:

 (2)

The expression (2) can be applied to the axisymmetric geome-
try shown in Fig. 1. The current density 
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𝑆𝑆𝑆𝑆1
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µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2
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�𝑟𝑟𝑟𝑟2 + 𝑅𝑅𝑅𝑅2 𝒓 2𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑) + (𝑧𝑧𝑧𝑧 𝒓 𝑍𝑍𝑍𝑍)2
. (4) 

In references [6-7], integral (3) is solved analytically with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. That function’s arguments 
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(5) 

in closed-form to enable calculation of L matrix on turn level in acceptable time range. Function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is equal to integral 
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A G function has a characteristic shape with the following properties: 
• The function has a maximum at point 𝜑𝜑𝜑𝜑 = 0 (from now on denoted as 𝐺𝐺𝐺𝐺0) and minimum at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋 (from 

now on denoted as 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋). 
• The function is monotonically decreasing. 
• Value of G function at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
 is equal to zero. 

• Absolute value of 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 is smaller than 𝐺𝐺𝐺𝐺0. 

Examples of G function, for different geometries of coils, are shown in Fig. 2. Physically, G function with narrow shape 
of positive part of the function and small ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
 corresponds to the coils that are close to each other. By increasing the 

distance between coils, the shape of G function is closer to the cosine. The approximation of the integral of the G function 
assumes that the integral value can be correlated with the ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
. 

To get the approximation of integral (5), numerous calculations of G function’s integral, using expressions from paper 
[7], were performed. Then, integral value is expressed using the rational functions, where the coefficients of the numerator 
and denominator polynomials were obtained using the least squares method: 

 (S1 = (r2-r1 )(z2-z1)) 

is cross-section of first coil) inside first coil is integrated with res-
pect to variables r, z, and φ to get the vector magnetic potential in-
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      (3)

where function Q(r,R,z,Z,φ), for considered geometry, is given 
as  

(4)

In references [6-7], integral (3) is solved analytically with res-
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(5)
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 corresponds to the coils that are close to each other. By increasing the 

distance between coils, the shape of G function is closer to the cosine. The approximation of the integral of the G function 
assumes that the integral value can be correlated with the ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
. 

To get the approximation of integral (5), numerous calculations of G function’s integral, using expressions from paper 
[7], were performed. Then, integral value is expressed using the rational functions, where the coefficients of the numerator 
and denominator polynomials were obtained using the least squares method: 

 is equal to zero.

• Absolute value of Gπ is smaller than G0.

Examples of G function, for different geometries of coils, are 
shown in Fig. 2. Physically, G function with narrow shape of posi-
tive part of the function and small ratio 

that influence of additional materials inside transformer winding, such as spacers, on overvoltage waveforms is not 
negligible.   

 

B. Inductance 

The mutual inductance of two coaxial coils with rectangular cross-sections can be calculated as a linked flux in one 
coil, whereas there is a current of one ampere in the other coil (source of magnetic flux). The linked flux can be calculated 
from vector magnetic potential using the expression: 

𝜙𝜙𝜙𝜙 = �𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 , (1) 

whereas the vector magnetic potential is related to the source current by integral of Green’s function for vector magnetic 
potential: 

𝑨𝑨𝑨𝑨(𝒓𝒓𝒓𝒓) =
µ0
4𝜋𝜋𝜋𝜋

�
𝑱𝑱𝑱𝑱(𝒓𝒓𝒓𝒓′)

|𝒓𝒓𝒓𝒓 𝒓 𝒓𝒓𝒓𝒓′|
𝑨𝑨𝑨𝑨3 𝒓𝒓𝒓𝒓′ . (2) 

The expression (2) can be applied to the axisymmetric geometry shown in Fig. 1. The current density 𝑱𝑱𝑱𝑱 = 1𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆1

 (𝑆𝑆𝑆𝑆1 =
(𝑟𝑟𝑟𝑟2 𝒓 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 𝒓 𝑧𝑧𝑧𝑧1) is cross-section of first coil) inside first coil is integrated with respect to variables 𝑟𝑟𝑟𝑟, 𝑧𝑧𝑧𝑧, and 𝜑𝜑𝜑𝜑 to get 
the vector magnetic potential inside the region of the second coil. The vector magnetic potential inside the second coil is 
integrated with respect to variables 𝑅𝑅𝑅𝑅 and 𝑍𝑍𝑍𝑍 (due to axisymmetric geometry, integration with respect to 𝜑𝜑𝜑𝜑 comes down to 
multiplication by 2𝜋𝜋𝜋𝜋) and divided by cross-section of other coil 𝑆𝑆𝑆𝑆2 = (𝑟𝑟𝑟𝑟4 𝒓 𝑟𝑟𝑟𝑟3)(𝑧𝑧𝑧𝑧4 𝒓 𝑧𝑧𝑧𝑧3) to get the flux linkage of second 
coil, i.e. the mutual inductance between first and second coil. By combining the expressions (1) and (2), and the definition 
that the mutual inductance is equal to fluxed linked in one coil, whereas the current of one ampere is in the other coil, the 
following expression is obtained: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

�𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝑟𝑟𝑟𝑟𝑨𝑨𝑨𝑨𝑅𝑅𝑅𝑅𝑨𝑨𝑨𝑨𝑧𝑧𝑧𝑧𝑨𝑨𝑨𝑨𝑍𝑍𝑍𝑍𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑 . (3) 

where function 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑), for considered geometry, is given as  

𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) =
𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑)

�𝑟𝑟𝑟𝑟2 + 𝑅𝑅𝑅𝑅2 𝒓 2𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑) + (𝑧𝑧𝑧𝑧 𝒓 𝑍𝑍𝑍𝑍)2
. (4) 

In references [6-7], integral (3) is solved analytically with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. That function’s arguments 
are coils’ geometry parameters 𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4, 𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, 𝑧𝑧𝑧𝑧3, 𝑧𝑧𝑧𝑧4, and azimuthal variable 𝜑𝜑𝜑𝜑. That function is denoted by 𝐺𝐺𝐺𝐺, 
whereas the arguments, except for the azimuthal variable 𝜑𝜑𝜑𝜑, are left out for the sake of conciseness. 

The goal is to obtain the approximation of integral: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑0
(5) 

in closed-form to enable calculation of L matrix on turn level in acceptable time range. Function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is equal to integral 
of 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. Detailed derivation of function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is given in [6-7]. 

A G function has a characteristic shape with the following properties: 
• The function has a maximum at point 𝜑𝜑𝜑𝜑 = 0 (from now on denoted as 𝐺𝐺𝐺𝐺0) and minimum at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋 (from 

now on denoted as 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋). 
• The function is monotonically decreasing. 
• Value of G function at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
 is equal to zero. 

• Absolute value of 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 is smaller than 𝐺𝐺𝐺𝐺0. 

Examples of G function, for different geometries of coils, are shown in Fig. 2. Physically, G function with narrow shape 
of positive part of the function and small ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
 corresponds to the coils that are close to each other. By increasing the 

distance between coils, the shape of G function is closer to the cosine. The approximation of the integral of the G function 
assumes that the integral value can be correlated with the ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
. 

To get the approximation of integral (5), numerous calculations of G function’s integral, using expressions from paper 
[7], were performed. Then, integral value is expressed using the rational functions, where the coefficients of the numerator 
and denominator polynomials were obtained using the least squares method: 

 corresponds to the coils 
that are close to each other. By increasing the distance between 
coils, the shape of G function is closer to the cosine. The approxi-
mation of the integral of the G function assumes that the integral 
value can be correlated with the ratio 

that influence of additional materials inside transformer winding, such as spacers, on overvoltage waveforms is not 
negligible.   

 

B. Inductance 

The mutual inductance of two coaxial coils with rectangular cross-sections can be calculated as a linked flux in one 
coil, whereas there is a current of one ampere in the other coil (source of magnetic flux). The linked flux can be calculated 
from vector magnetic potential using the expression: 

𝜙𝜙𝜙𝜙 = �𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 , (1) 

whereas the vector magnetic potential is related to the source current by integral of Green’s function for vector magnetic 
potential: 

𝑨𝑨𝑨𝑨(𝒓𝒓𝒓𝒓) =
µ0
4𝜋𝜋𝜋𝜋

�
𝑱𝑱𝑱𝑱(𝒓𝒓𝒓𝒓′)

|𝒓𝒓𝒓𝒓 𝒓 𝒓𝒓𝒓𝒓′|
𝑨𝑨𝑨𝑨3 𝒓𝒓𝒓𝒓′ . (2) 

The expression (2) can be applied to the axisymmetric geometry shown in Fig. 1. The current density 𝑱𝑱𝑱𝑱 = 1𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆1

 (𝑆𝑆𝑆𝑆1 =
(𝑟𝑟𝑟𝑟2 𝒓 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 𝒓 𝑧𝑧𝑧𝑧1) is cross-section of first coil) inside first coil is integrated with respect to variables 𝑟𝑟𝑟𝑟, 𝑧𝑧𝑧𝑧, and 𝜑𝜑𝜑𝜑 to get 
the vector magnetic potential inside the region of the second coil. The vector magnetic potential inside the second coil is 
integrated with respect to variables 𝑅𝑅𝑅𝑅 and 𝑍𝑍𝑍𝑍 (due to axisymmetric geometry, integration with respect to 𝜑𝜑𝜑𝜑 comes down to 
multiplication by 2𝜋𝜋𝜋𝜋) and divided by cross-section of other coil 𝑆𝑆𝑆𝑆2 = (𝑟𝑟𝑟𝑟4 𝒓 𝑟𝑟𝑟𝑟3)(𝑧𝑧𝑧𝑧4 𝒓 𝑧𝑧𝑧𝑧3) to get the flux linkage of second 
coil, i.e. the mutual inductance between first and second coil. By combining the expressions (1) and (2), and the definition 
that the mutual inductance is equal to fluxed linked in one coil, whereas the current of one ampere is in the other coil, the 
following expression is obtained: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

�𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝑟𝑟𝑟𝑟𝑨𝑨𝑨𝑨𝑅𝑅𝑅𝑅𝑨𝑨𝑨𝑨𝑧𝑧𝑧𝑧𝑨𝑨𝑨𝑨𝑍𝑍𝑍𝑍𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑 . (3) 

where function 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑), for considered geometry, is given as  

𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) =
𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑)

�𝑟𝑟𝑟𝑟2 + 𝑅𝑅𝑅𝑅2 𝒓 2𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑) + (𝑧𝑧𝑧𝑧 𝒓 𝑍𝑍𝑍𝑍)2
. (4) 

In references [6-7], integral (3) is solved analytically with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. That function’s arguments 
are coils’ geometry parameters 𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4, 𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, 𝑧𝑧𝑧𝑧3, 𝑧𝑧𝑧𝑧4, and azimuthal variable 𝜑𝜑𝜑𝜑. That function is denoted by 𝐺𝐺𝐺𝐺, 
whereas the arguments, except for the azimuthal variable 𝜑𝜑𝜑𝜑, are left out for the sake of conciseness. 

The goal is to obtain the approximation of integral: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑0
(5) 

in closed-form to enable calculation of L matrix on turn level in acceptable time range. Function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is equal to integral 
of 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. Detailed derivation of function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is given in [6-7]. 

A G function has a characteristic shape with the following properties: 
• The function has a maximum at point 𝜑𝜑𝜑𝜑 = 0 (from now on denoted as 𝐺𝐺𝐺𝐺0) and minimum at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋 (from 

now on denoted as 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋). 
• The function is monotonically decreasing. 
• Value of G function at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
 is equal to zero. 

• Absolute value of 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 is smaller than 𝐺𝐺𝐺𝐺0. 

Examples of G function, for different geometries of coils, are shown in Fig. 2. Physically, G function with narrow shape 
of positive part of the function and small ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
 corresponds to the coils that are close to each other. By increasing the 

distance between coils, the shape of G function is closer to the cosine. The approximation of the integral of the G function 
assumes that the integral value can be correlated with the ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
. 

To get the approximation of integral (5), numerous calculations of G function’s integral, using expressions from paper 
[7], were performed. Then, integral value is expressed using the rational functions, where the coefficients of the numerator 
and denominator polynomials were obtained using the least squares method: 

.

To get the approximation of integral (5), numerous calculations 
of G function’s integral, using expressions from paper [7], were 
performed. Then, integral value is expressed using the rational 
functions, where the coefficients of the numerator and denomina-
tor polynomials were obtained using the least squares method:

Above-mentioned expressions can be used to calculate the self-
inductance. In that case, geometrical parameters are r3= r1+Δ, r4= 
r2+Δ, z3= z1+Δ, and z4= z2+Δ. Small displacement Δ is aded to avoid 
singularities, which are explained in papers [6-7]. In this paper, that 
displacement is Δ= 10-6.

Expressions for G0 and Gπ are given in papers  [6-7].

C. Resistance
The resistances in the proposed model include DC resistance, 

and AC resistances that represent losses due to skin and proximity 
effects. The resistance per unit length that takes skin effect into 
account is calculated using the expression [13]

where w and h are width and height of the conductor, respec-
tively. If the conductor consists of more separately insulated wires 
(e.g. continuously transposed conductor), resistance for each wire 
is calculated separately. The parameter σ is the electrical conduc-
tivity of conductor, and the parameter 

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑𝜑
≈ 𝐺𝐺𝐺𝐺𝜑

⎣
⎢
⎢
⎡0.008618 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

�
3

+ 9.711 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 159.6𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 75.62

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
3

+ 35.03 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 131.3𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 77.74

−
1.07𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.5949

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2
− 0.5201𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.002404⎦
⎥
⎥
⎤

. (6) 

Above-mentioned expressions can be used to calculate the self-inductance. In that case, geometrical parameters are 
𝑟𝑟𝑟𝑟3 = 𝑟𝑟𝑟𝑟1 + 𝛥𝛥𝛥𝛥, 𝑟𝑟𝑟𝑟4 = 𝑟𝑟𝑟𝑟2 + 𝛥𝛥𝛥𝛥, 𝑧𝑧𝑧𝑧3 = 𝑧𝑧𝑧𝑧1 + 𝛥𝛥𝛥𝛥, and 𝑧𝑧𝑧𝑧4 = 𝑧𝑧𝑧𝑧2 + 𝛥𝛥𝛥𝛥. Small displacement 𝛥𝛥𝛥𝛥 is added to avoid singularities, which are 
explained in papers [6-7]. In this paper, that displacement is 𝛥𝛥𝛥𝛥 = 10−6. 

Expressions for 𝐺𝐺𝐺𝐺𝜑 and 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 are given in papers [6-7]. 

C. Resistance 

The resistances in the proposed model include DC resistance, and AC resistances that represent losses due to skin and 
proximity effects. The resistance per unit length that takes skin effect into account is calculated using the expression [13] 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ =
1

4𝜎𝜎𝜎𝜎(ℎ + 𝑤𝑤𝑤𝑤)2 �
ℎ
𝛿𝛿𝛿𝛿

sinh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + sin �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�

cosh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + cos �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�
+
𝑤𝑤𝑤𝑤
𝛿𝛿𝛿𝛿

sinh �2 ℎ𝛿𝛿𝛿𝛿� + sin �2 ℎ𝛿𝛿𝛿𝛿�

cosh �2 ℎ𝛿𝛿𝛿𝛿� + cos �2 ℎ𝛿𝛿𝛿𝛿�
+ 2� , (7) 

where 𝑤𝑤𝑤𝑤 and ℎ are width and height of the conductor, respectively. If the conductor consists of more separately insulated 
wires (e.g. continuously transposed conductor), resistance for each wire is calculated separately. The parameter 𝜎𝜎𝜎𝜎 is the 

electrical conductivity of conductor, and the parameter 𝛿𝛿𝛿𝛿 = � 1
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋µ𝜎𝜎𝜎𝜎

 is the skin depth of conductor. R matrix is calculated 

at arbitrarily chosen frequency 𝑓𝑓𝑓𝑓 = 10 kHz. 
To calculate the losses due to proximity effect, magnetic field at the position of another coil (𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) must be calculated. 

The geometry of windings is simplified to get simple mathematical expressions. The permeable core is neglected and the 
geometry of winding is assumed to be planar (see Fig. 3). Expressions for magnetic field are derived from Biot-Savart 
law: 

𝑩𝑩𝑩𝑩(𝒓𝒓𝒓𝒓) =
µ𝜑
4𝜋𝜋𝜋𝜋

�
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 × 𝒓𝒓𝒓𝒓′

|𝒓𝒓𝒓𝒓′|3
. (8) 

For the geometry shown in Fig 3 (infinitely long coil of rectangular cross-section with current of one ampere), Biot-Savart 
(8) can be written as: 

𝐵𝐵𝐵𝐵(𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) � � �
(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟����⃗ − (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧����⃗

�𝑙𝑙𝑙𝑙2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2
3

𝑧𝑧𝑧𝑧2

𝑧𝑧𝑧𝑧1

𝑟𝑟𝑟𝑟2

𝑟𝑟𝑟𝑟1

𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
∞

𝑙𝑙𝑙𝑙𝜑−∞

𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧. (9) 

By solving the integral (9), 𝑟𝑟𝑟𝑟 and 𝑧𝑧𝑧𝑧 components of the magnetic field are obtained: 
 

𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��  

+𝑘(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (10) 

 

𝐵𝐵𝐵𝐵𝑧𝑧𝑧𝑧 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟

��  

+𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟

�� + 4𝑧𝑧𝑧𝑧� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (11) 

𝑘𝑘𝑘𝑘 =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) . (12) 

After the calculation of magnetic field, the losses (equal to resistance since current in first coil is one ampere) due to 
proximity effect per unit length are calculated separately for each component of the magnetic field. For that purpose, 
simple, well-known expressions for eddy-current losses (per unit volume) in infinite planar plate of thickness 𝑡𝑡𝑡𝑡 and 
conductivity 𝜎𝜎𝜎𝜎 (page 154 in [12]) are used: 

 is the skin depth of 
conductor. R matrix is calculated at arbitrarily chosen frequency 
f=10 kHz..

To calculate the losses due to proximity effect, magnetic field at 
the position of another coil (r0, z0) must be calculated. The geome-
try of windings is simplified to get simple mathematical expressi-
ons. The permeable core is neglected and the geometry of winding 
is assumed to be planar (see Fig. 3). Expressions for magnetic field 
are derived from Biot-Savart law:

For the geometry shown in Fig 3 (infinitely long coil of rectan-
gular cross-section with current of one ampere), Biot-Savart (8) 
can be written as:

that influence of additional materials inside transformer winding, such as spacers, on overvoltage waveforms is not 
negligible.   

 

B. Inductance 

The mutual inductance of two coaxial coils with rectangular cross-sections can be calculated as a linked flux in one 
coil, whereas there is a current of one ampere in the other coil (source of magnetic flux). The linked flux can be calculated 
from vector magnetic potential using the expression: 

𝜙𝜙𝜙𝜙 = �𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 , (1) 

whereas the vector magnetic potential is related to the source current by integral of Green’s function for vector magnetic 
potential: 

𝑨𝑨𝑨𝑨(𝒓𝒓𝒓𝒓) =
µ0
4𝜋𝜋𝜋𝜋

�
𝑱𝑱𝑱𝑱(𝒓𝒓𝒓𝒓′)

|𝒓𝒓𝒓𝒓 𝒓 𝒓𝒓𝒓𝒓′|
𝑨𝑨𝑨𝑨3 𝒓𝒓𝒓𝒓′ . (2) 

The expression (2) can be applied to the axisymmetric geometry shown in Fig. 1. The current density 𝑱𝑱𝑱𝑱 = 1𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆1

 (𝑆𝑆𝑆𝑆1 =
(𝑟𝑟𝑟𝑟2 𝒓 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 𝒓 𝑧𝑧𝑧𝑧1) is cross-section of first coil) inside first coil is integrated with respect to variables 𝑟𝑟𝑟𝑟, 𝑧𝑧𝑧𝑧, and 𝜑𝜑𝜑𝜑 to get 
the vector magnetic potential inside the region of the second coil. The vector magnetic potential inside the second coil is 
integrated with respect to variables 𝑅𝑅𝑅𝑅 and 𝑍𝑍𝑍𝑍 (due to axisymmetric geometry, integration with respect to 𝜑𝜑𝜑𝜑 comes down to 
multiplication by 2𝜋𝜋𝜋𝜋) and divided by cross-section of other coil 𝑆𝑆𝑆𝑆2 = (𝑟𝑟𝑟𝑟4 𝒓 𝑟𝑟𝑟𝑟3)(𝑧𝑧𝑧𝑧4 𝒓 𝑧𝑧𝑧𝑧3) to get the flux linkage of second 
coil, i.e. the mutual inductance between first and second coil. By combining the expressions (1) and (2), and the definition 
that the mutual inductance is equal to fluxed linked in one coil, whereas the current of one ampere is in the other coil, the 
following expression is obtained: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

�𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝑟𝑟𝑟𝑟𝑨𝑨𝑨𝑨𝑅𝑅𝑅𝑅𝑨𝑨𝑨𝑨𝑧𝑧𝑧𝑧𝑨𝑨𝑨𝑨𝑍𝑍𝑍𝑍𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑 . (3) 

where function 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑), for considered geometry, is given as  

𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) =
𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑)

�𝑟𝑟𝑟𝑟2 + 𝑅𝑅𝑅𝑅2 𝒓 2𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑) + (𝑧𝑧𝑧𝑧 𝒓 𝑍𝑍𝑍𝑍)2
. (4) 

In references [6-7], integral (3) is solved analytically with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. That function’s arguments 
are coils’ geometry parameters 𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4, 𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, 𝑧𝑧𝑧𝑧3, 𝑧𝑧𝑧𝑧4, and azimuthal variable 𝜑𝜑𝜑𝜑. That function is denoted by 𝐺𝐺𝐺𝐺, 
whereas the arguments, except for the azimuthal variable 𝜑𝜑𝜑𝜑, are left out for the sake of conciseness. 

The goal is to obtain the approximation of integral: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑0
(5) 

in closed-form to enable calculation of L matrix on turn level in acceptable time range. Function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is equal to integral 
of 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. Detailed derivation of function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is given in [6-7]. 

A G function has a characteristic shape with the following properties: 
• The function has a maximum at point 𝜑𝜑𝜑𝜑 = 0 (from now on denoted as 𝐺𝐺𝐺𝐺0) and minimum at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋 (from 

now on denoted as 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋). 
• The function is monotonically decreasing. 
• Value of G function at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
 is equal to zero. 

• Absolute value of 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 is smaller than 𝐺𝐺𝐺𝐺0. 

Examples of G function, for different geometries of coils, are shown in Fig. 2. Physically, G function with narrow shape 
of positive part of the function and small ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
 corresponds to the coils that are close to each other. By increasing the 

distance between coils, the shape of G function is closer to the cosine. The approximation of the integral of the G function 
assumes that the integral value can be correlated with the ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
. 

To get the approximation of integral (5), numerous calculations of G function’s integral, using expressions from paper 
[7], were performed. Then, integral value is expressed using the rational functions, where the coefficients of the numerator 
and denominator polynomials were obtained using the least squares method: 

that influence of additional materials inside transformer winding, such as spacers, on overvoltage waveforms is not 
negligible.   

 

B. Inductance 

The mutual inductance of two coaxial coils with rectangular cross-sections can be calculated as a linked flux in one 
coil, whereas there is a current of one ampere in the other coil (source of magnetic flux). The linked flux can be calculated 
from vector magnetic potential using the expression: 

𝜙𝜙𝜙𝜙 = �𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 , (1) 

whereas the vector magnetic potential is related to the source current by integral of Green’s function for vector magnetic 
potential: 

𝑨𝑨𝑨𝑨(𝒓𝒓𝒓𝒓) =
µ0
4𝜋𝜋𝜋𝜋

�
𝑱𝑱𝑱𝑱(𝒓𝒓𝒓𝒓′)

|𝒓𝒓𝒓𝒓 𝒓 𝒓𝒓𝒓𝒓′|
𝑨𝑨𝑨𝑨3 𝒓𝒓𝒓𝒓′ . (2) 

The expression (2) can be applied to the axisymmetric geometry shown in Fig. 1. The current density 𝑱𝑱𝑱𝑱 = 1𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆1

 (𝑆𝑆𝑆𝑆1 =
(𝑟𝑟𝑟𝑟2 𝒓 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 𝒓 𝑧𝑧𝑧𝑧1) is cross-section of first coil) inside first coil is integrated with respect to variables 𝑟𝑟𝑟𝑟, 𝑧𝑧𝑧𝑧, and 𝜑𝜑𝜑𝜑 to get 
the vector magnetic potential inside the region of the second coil. The vector magnetic potential inside the second coil is 
integrated with respect to variables 𝑅𝑅𝑅𝑅 and 𝑍𝑍𝑍𝑍 (due to axisymmetric geometry, integration with respect to 𝜑𝜑𝜑𝜑 comes down to 
multiplication by 2𝜋𝜋𝜋𝜋) and divided by cross-section of other coil 𝑆𝑆𝑆𝑆2 = (𝑟𝑟𝑟𝑟4 𝒓 𝑟𝑟𝑟𝑟3)(𝑧𝑧𝑧𝑧4 𝒓 𝑧𝑧𝑧𝑧3) to get the flux linkage of second 
coil, i.e. the mutual inductance between first and second coil. By combining the expressions (1) and (2), and the definition 
that the mutual inductance is equal to fluxed linked in one coil, whereas the current of one ampere is in the other coil, the 
following expression is obtained: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

�𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝑟𝑟𝑟𝑟𝑨𝑨𝑨𝑨𝑅𝑅𝑅𝑅𝑨𝑨𝑨𝑨𝑧𝑧𝑧𝑧𝑨𝑨𝑨𝑨𝑍𝑍𝑍𝑍𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑 . (3) 

where function 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑), for considered geometry, is given as  

𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) =
𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑)

�𝑟𝑟𝑟𝑟2 + 𝑅𝑅𝑅𝑅2 𝒓 2𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑) + (𝑧𝑧𝑧𝑧 𝒓 𝑍𝑍𝑍𝑍)2
. (4) 

In references [6-7], integral (3) is solved analytically with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. That function’s arguments 
are coils’ geometry parameters 𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4, 𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, 𝑧𝑧𝑧𝑧3, 𝑧𝑧𝑧𝑧4, and azimuthal variable 𝜑𝜑𝜑𝜑. That function is denoted by 𝐺𝐺𝐺𝐺, 
whereas the arguments, except for the azimuthal variable 𝜑𝜑𝜑𝜑, are left out for the sake of conciseness. 

The goal is to obtain the approximation of integral: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑0
(5) 

in closed-form to enable calculation of L matrix on turn level in acceptable time range. Function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is equal to integral 
of 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. Detailed derivation of function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is given in [6-7]. 

A G function has a characteristic shape with the following properties: 
• The function has a maximum at point 𝜑𝜑𝜑𝜑 = 0 (from now on denoted as 𝐺𝐺𝐺𝐺0) and minimum at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋 (from 

now on denoted as 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋). 
• The function is monotonically decreasing. 
• Value of G function at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
 is equal to zero. 

• Absolute value of 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 is smaller than 𝐺𝐺𝐺𝐺0. 

Examples of G function, for different geometries of coils, are shown in Fig. 2. Physically, G function with narrow shape 
of positive part of the function and small ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
 corresponds to the coils that are close to each other. By increasing the 

distance between coils, the shape of G function is closer to the cosine. The approximation of the integral of the G function 
assumes that the integral value can be correlated with the ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
. 

To get the approximation of integral (5), numerous calculations of G function’s integral, using expressions from paper 
[7], were performed. Then, integral value is expressed using the rational functions, where the coefficients of the numerator 
and denominator polynomials were obtained using the least squares method: 

that influence of additional materials inside transformer winding, such as spacers, on overvoltage waveforms is not 
negligible.   

 

B. Inductance 

The mutual inductance of two coaxial coils with rectangular cross-sections can be calculated as a linked flux in one 
coil, whereas there is a current of one ampere in the other coil (source of magnetic flux). The linked flux can be calculated 
from vector magnetic potential using the expression: 

𝜙𝜙𝜙𝜙 = �𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 , (1) 

whereas the vector magnetic potential is related to the source current by integral of Green’s function for vector magnetic 
potential: 

𝑨𝑨𝑨𝑨(𝒓𝒓𝒓𝒓) =
µ0
4𝜋𝜋𝜋𝜋

�
𝑱𝑱𝑱𝑱(𝒓𝒓𝒓𝒓′)

|𝒓𝒓𝒓𝒓 𝒓 𝒓𝒓𝒓𝒓′|
𝑨𝑨𝑨𝑨3 𝒓𝒓𝒓𝒓′ . (2) 

The expression (2) can be applied to the axisymmetric geometry shown in Fig. 1. The current density 𝑱𝑱𝑱𝑱 = 1𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆1

 (𝑆𝑆𝑆𝑆1 =
(𝑟𝑟𝑟𝑟2 𝒓 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 𝒓 𝑧𝑧𝑧𝑧1) is cross-section of first coil) inside first coil is integrated with respect to variables 𝑟𝑟𝑟𝑟, 𝑧𝑧𝑧𝑧, and 𝜑𝜑𝜑𝜑 to get 
the vector magnetic potential inside the region of the second coil. The vector magnetic potential inside the second coil is 
integrated with respect to variables 𝑅𝑅𝑅𝑅 and 𝑍𝑍𝑍𝑍 (due to axisymmetric geometry, integration with respect to 𝜑𝜑𝜑𝜑 comes down to 
multiplication by 2𝜋𝜋𝜋𝜋) and divided by cross-section of other coil 𝑆𝑆𝑆𝑆2 = (𝑟𝑟𝑟𝑟4 𝒓 𝑟𝑟𝑟𝑟3)(𝑧𝑧𝑧𝑧4 𝒓 𝑧𝑧𝑧𝑧3) to get the flux linkage of second 
coil, i.e. the mutual inductance between first and second coil. By combining the expressions (1) and (2), and the definition 
that the mutual inductance is equal to fluxed linked in one coil, whereas the current of one ampere is in the other coil, the 
following expression is obtained: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

�𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝑟𝑟𝑟𝑟𝑨𝑨𝑨𝑨𝑅𝑅𝑅𝑅𝑨𝑨𝑨𝑨𝑧𝑧𝑧𝑧𝑨𝑨𝑨𝑨𝑍𝑍𝑍𝑍𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑 . (3) 

where function 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑), for considered geometry, is given as  

𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) =
𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑)

�𝑟𝑟𝑟𝑟2 + 𝑅𝑅𝑅𝑅2 𝒓 2𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑) + (𝑧𝑧𝑧𝑧 𝒓 𝑍𝑍𝑍𝑍)2
. (4) 

In references [6-7], integral (3) is solved analytically with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. That function’s arguments 
are coils’ geometry parameters 𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4, 𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, 𝑧𝑧𝑧𝑧3, 𝑧𝑧𝑧𝑧4, and azimuthal variable 𝜑𝜑𝜑𝜑. That function is denoted by 𝐺𝐺𝐺𝐺, 
whereas the arguments, except for the azimuthal variable 𝜑𝜑𝜑𝜑, are left out for the sake of conciseness. 

The goal is to obtain the approximation of integral: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑0
(5) 

in closed-form to enable calculation of L matrix on turn level in acceptable time range. Function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is equal to integral 
of 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. Detailed derivation of function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is given in [6-7]. 

A G function has a characteristic shape with the following properties: 
• The function has a maximum at point 𝜑𝜑𝜑𝜑 = 0 (from now on denoted as 𝐺𝐺𝐺𝐺0) and minimum at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋 (from 

now on denoted as 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋). 
• The function is monotonically decreasing. 
• Value of G function at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
 is equal to zero. 

• Absolute value of 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 is smaller than 𝐺𝐺𝐺𝐺0. 

Examples of G function, for different geometries of coils, are shown in Fig. 2. Physically, G function with narrow shape 
of positive part of the function and small ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
 corresponds to the coils that are close to each other. By increasing the 

distance between coils, the shape of G function is closer to the cosine. The approximation of the integral of the G function 
assumes that the integral value can be correlated with the ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
. 

To get the approximation of integral (5), numerous calculations of G function’s integral, using expressions from paper 
[7], were performed. Then, integral value is expressed using the rational functions, where the coefficients of the numerator 
and denominator polynomials were obtained using the least squares method: 

that influence of additional materials inside transformer winding, such as spacers, on overvoltage waveforms is not 
negligible.   

 

B. Inductance 

The mutual inductance of two coaxial coils with rectangular cross-sections can be calculated as a linked flux in one 
coil, whereas there is a current of one ampere in the other coil (source of magnetic flux). The linked flux can be calculated 
from vector magnetic potential using the expression: 

𝜙𝜙𝜙𝜙 = �𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 , (1) 

whereas the vector magnetic potential is related to the source current by integral of Green’s function for vector magnetic 
potential: 

𝑨𝑨𝑨𝑨(𝒓𝒓𝒓𝒓) =
µ0
4𝜋𝜋𝜋𝜋

�
𝑱𝑱𝑱𝑱(𝒓𝒓𝒓𝒓′)

|𝒓𝒓𝒓𝒓 𝒓 𝒓𝒓𝒓𝒓′|
𝑨𝑨𝑨𝑨3 𝒓𝒓𝒓𝒓′ . (2) 

The expression (2) can be applied to the axisymmetric geometry shown in Fig. 1. The current density 𝑱𝑱𝑱𝑱 = 1𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆1

 (𝑆𝑆𝑆𝑆1 =
(𝑟𝑟𝑟𝑟2 𝒓 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 𝒓 𝑧𝑧𝑧𝑧1) is cross-section of first coil) inside first coil is integrated with respect to variables 𝑟𝑟𝑟𝑟, 𝑧𝑧𝑧𝑧, and 𝜑𝜑𝜑𝜑 to get 
the vector magnetic potential inside the region of the second coil. The vector magnetic potential inside the second coil is 
integrated with respect to variables 𝑅𝑅𝑅𝑅 and 𝑍𝑍𝑍𝑍 (due to axisymmetric geometry, integration with respect to 𝜑𝜑𝜑𝜑 comes down to 
multiplication by 2𝜋𝜋𝜋𝜋) and divided by cross-section of other coil 𝑆𝑆𝑆𝑆2 = (𝑟𝑟𝑟𝑟4 𝒓 𝑟𝑟𝑟𝑟3)(𝑧𝑧𝑧𝑧4 𝒓 𝑧𝑧𝑧𝑧3) to get the flux linkage of second 
coil, i.e. the mutual inductance between first and second coil. By combining the expressions (1) and (2), and the definition 
that the mutual inductance is equal to fluxed linked in one coil, whereas the current of one ampere is in the other coil, the 
following expression is obtained: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

�𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝑟𝑟𝑟𝑟𝑨𝑨𝑨𝑨𝑅𝑅𝑅𝑅𝑨𝑨𝑨𝑨𝑧𝑧𝑧𝑧𝑨𝑨𝑨𝑨𝑍𝑍𝑍𝑍𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑 . (3) 

where function 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑), for considered geometry, is given as  

𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) =
𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑)

�𝑟𝑟𝑟𝑟2 + 𝑅𝑅𝑅𝑅2 𝒓 2𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑) + (𝑧𝑧𝑧𝑧 𝒓 𝑍𝑍𝑍𝑍)2
. (4) 

In references [6-7], integral (3) is solved analytically with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. That function’s arguments 
are coils’ geometry parameters 𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4, 𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, 𝑧𝑧𝑧𝑧3, 𝑧𝑧𝑧𝑧4, and azimuthal variable 𝜑𝜑𝜑𝜑. That function is denoted by 𝐺𝐺𝐺𝐺, 
whereas the arguments, except for the azimuthal variable 𝜑𝜑𝜑𝜑, are left out for the sake of conciseness. 

The goal is to obtain the approximation of integral: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑0
(5) 

in closed-form to enable calculation of L matrix on turn level in acceptable time range. Function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is equal to integral 
of 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. Detailed derivation of function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is given in [6-7]. 

A G function has a characteristic shape with the following properties: 
• The function has a maximum at point 𝜑𝜑𝜑𝜑 = 0 (from now on denoted as 𝐺𝐺𝐺𝐺0) and minimum at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋 (from 

now on denoted as 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋). 
• The function is monotonically decreasing. 
• Value of G function at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
 is equal to zero. 

• Absolute value of 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 is smaller than 𝐺𝐺𝐺𝐺0. 

Examples of G function, for different geometries of coils, are shown in Fig. 2. Physically, G function with narrow shape 
of positive part of the function and small ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
 corresponds to the coils that are close to each other. By increasing the 

distance between coils, the shape of G function is closer to the cosine. The approximation of the integral of the G function 
assumes that the integral value can be correlated with the ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
. 

To get the approximation of integral (5), numerous calculations of G function’s integral, using expressions from paper 
[7], were performed. Then, integral value is expressed using the rational functions, where the coefficients of the numerator 
and denominator polynomials were obtained using the least squares method: 

that influence of additional materials inside transformer winding, such as spacers, on overvoltage waveforms is not 
negligible.   

 

B. Inductance 

The mutual inductance of two coaxial coils with rectangular cross-sections can be calculated as a linked flux in one 
coil, whereas there is a current of one ampere in the other coil (source of magnetic flux). The linked flux can be calculated 
from vector magnetic potential using the expression: 

𝜙𝜙𝜙𝜙 = �𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 , (1) 

whereas the vector magnetic potential is related to the source current by integral of Green’s function for vector magnetic 
potential: 

𝑨𝑨𝑨𝑨(𝒓𝒓𝒓𝒓) =
µ0
4𝜋𝜋𝜋𝜋

�
𝑱𝑱𝑱𝑱(𝒓𝒓𝒓𝒓′)

|𝒓𝒓𝒓𝒓 𝒓 𝒓𝒓𝒓𝒓′|
𝑨𝑨𝑨𝑨3 𝒓𝒓𝒓𝒓′ . (2) 

The expression (2) can be applied to the axisymmetric geometry shown in Fig. 1. The current density 𝑱𝑱𝑱𝑱 = 1𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆1

 (𝑆𝑆𝑆𝑆1 =
(𝑟𝑟𝑟𝑟2 𝒓 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 𝒓 𝑧𝑧𝑧𝑧1) is cross-section of first coil) inside first coil is integrated with respect to variables 𝑟𝑟𝑟𝑟, 𝑧𝑧𝑧𝑧, and 𝜑𝜑𝜑𝜑 to get 
the vector magnetic potential inside the region of the second coil. The vector magnetic potential inside the second coil is 
integrated with respect to variables 𝑅𝑅𝑅𝑅 and 𝑍𝑍𝑍𝑍 (due to axisymmetric geometry, integration with respect to 𝜑𝜑𝜑𝜑 comes down to 
multiplication by 2𝜋𝜋𝜋𝜋) and divided by cross-section of other coil 𝑆𝑆𝑆𝑆2 = (𝑟𝑟𝑟𝑟4 𝒓 𝑟𝑟𝑟𝑟3)(𝑧𝑧𝑧𝑧4 𝒓 𝑧𝑧𝑧𝑧3) to get the flux linkage of second 
coil, i.e. the mutual inductance between first and second coil. By combining the expressions (1) and (2), and the definition 
that the mutual inductance is equal to fluxed linked in one coil, whereas the current of one ampere is in the other coil, the 
following expression is obtained: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

�𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝑟𝑟𝑟𝑟𝑨𝑨𝑨𝑨𝑅𝑅𝑅𝑅𝑨𝑨𝑨𝑨𝑧𝑧𝑧𝑧𝑨𝑨𝑨𝑨𝑍𝑍𝑍𝑍𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑 . (3) 

where function 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑), for considered geometry, is given as  

𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) =
𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑)

�𝑟𝑟𝑟𝑟2 + 𝑅𝑅𝑅𝑅2 𝒓 2𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 cos(𝜑𝜑𝜑𝜑) + (𝑧𝑧𝑧𝑧 𝒓 𝑍𝑍𝑍𝑍)2
. (4) 

In references [6-7], integral (3) is solved analytically with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. That function’s arguments 
are coils’ geometry parameters 𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4, 𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, 𝑧𝑧𝑧𝑧3, 𝑧𝑧𝑧𝑧4, and azimuthal variable 𝜑𝜑𝜑𝜑. That function is denoted by 𝐺𝐺𝐺𝐺, 
whereas the arguments, except for the azimuthal variable 𝜑𝜑𝜑𝜑, are left out for the sake of conciseness. 

The goal is to obtain the approximation of integral: 

𝐿𝐿𝐿𝐿12 =
µ0
𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆2

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑨𝑨𝑨𝑨𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑0
(5) 

in closed-form to enable calculation of L matrix on turn level in acceptable time range. Function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is equal to integral 
of 𝑄𝑄𝑄𝑄(𝑟𝑟𝑟𝑟,𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧,𝑍𝑍𝑍𝑍,𝜑𝜑𝜑𝜑) with respect to variables 𝑟𝑟𝑟𝑟, 𝑅𝑅𝑅𝑅, 𝑧𝑧𝑧𝑧, and 𝑍𝑍𝑍𝑍. Detailed derivation of function 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑) is given in [6-7]. 

A G function has a characteristic shape with the following properties: 
• The function has a maximum at point 𝜑𝜑𝜑𝜑 = 0 (from now on denoted as 𝐺𝐺𝐺𝐺0) and minimum at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋 (from 

now on denoted as 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋). 
• The function is monotonically decreasing. 
• Value of G function at point 𝜑𝜑𝜑𝜑 = 𝜋𝜋𝜋𝜋

2
 is equal to zero. 

• Absolute value of 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 is smaller than 𝐺𝐺𝐺𝐺0. 

Examples of G function, for different geometries of coils, are shown in Fig. 2. Physically, G function with narrow shape 
of positive part of the function and small ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
 corresponds to the coils that are close to each other. By increasing the 

distance between coils, the shape of G function is closer to the cosine. The approximation of the integral of the G function 
assumes that the integral value can be correlated with the ratio 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋

𝐺𝐺𝐺𝐺0
. 

To get the approximation of integral (5), numerous calculations of G function’s integral, using expressions from paper 
[7], were performed. Then, integral value is expressed using the rational functions, where the coefficients of the numerator 
and denominator polynomials were obtained using the least squares method: 

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑𝜑
≈ 𝐺𝐺𝐺𝐺𝜑

⎣
⎢
⎢
⎡0.008618 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

�
3

+ 9.711 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 159.6𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 75.62

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
3

+ 35.03 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 131.3𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 77.74

−
1.07𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.5949

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2
− 0.5201𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.002404⎦
⎥
⎥
⎤

. (6) 

Above-mentioned expressions can be used to calculate the self-inductance. In that case, geometrical parameters are 
𝑟𝑟𝑟𝑟3 = 𝑟𝑟𝑟𝑟1 + 𝛥𝛥𝛥𝛥, 𝑟𝑟𝑟𝑟4 = 𝑟𝑟𝑟𝑟2 + 𝛥𝛥𝛥𝛥, 𝑧𝑧𝑧𝑧3 = 𝑧𝑧𝑧𝑧1 + 𝛥𝛥𝛥𝛥, and 𝑧𝑧𝑧𝑧4 = 𝑧𝑧𝑧𝑧2 + 𝛥𝛥𝛥𝛥. Small displacement 𝛥𝛥𝛥𝛥 is added to avoid singularities, which are 
explained in papers [6-7]. In this paper, that displacement is 𝛥𝛥𝛥𝛥 = 10−6. 

Expressions for 𝐺𝐺𝐺𝐺𝜑 and 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 are given in papers [6-7]. 

C. Resistance 

The resistances in the proposed model include DC resistance, and AC resistances that represent losses due to skin and 
proximity effects. The resistance per unit length that takes skin effect into account is calculated using the expression [13] 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ =
1

4𝜎𝜎𝜎𝜎(ℎ + 𝑤𝑤𝑤𝑤)2 �
ℎ
𝛿𝛿𝛿𝛿

sinh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + sin �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�

cosh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + cos �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�
+
𝑤𝑤𝑤𝑤
𝛿𝛿𝛿𝛿

sinh �2 ℎ𝛿𝛿𝛿𝛿� + sin �2 ℎ𝛿𝛿𝛿𝛿�

cosh �2 ℎ𝛿𝛿𝛿𝛿� + cos �2 ℎ𝛿𝛿𝛿𝛿�
+ 2� , (7) 

where 𝑤𝑤𝑤𝑤 and ℎ are width and height of the conductor, respectively. If the conductor consists of more separately insulated 
wires (e.g. continuously transposed conductor), resistance for each wire is calculated separately. The parameter 𝜎𝜎𝜎𝜎 is the 

electrical conductivity of conductor, and the parameter 𝛿𝛿𝛿𝛿 = � 1
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋µ𝜎𝜎𝜎𝜎

 is the skin depth of conductor. R matrix is calculated 

at arbitrarily chosen frequency 𝑓𝑓𝑓𝑓 = 10 kHz. 
To calculate the losses due to proximity effect, magnetic field at the position of another coil (𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) must be calculated. 

The geometry of windings is simplified to get simple mathematical expressions. The permeable core is neglected and the 
geometry of winding is assumed to be planar (see Fig. 3). Expressions for magnetic field are derived from Biot-Savart 
law: 

𝑩𝑩𝑩𝑩(𝒓𝒓𝒓𝒓) =
µ𝜑
4𝜋𝜋𝜋𝜋

�
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 × 𝒓𝒓𝒓𝒓′

|𝒓𝒓𝒓𝒓′|3
. (8) 

For the geometry shown in Fig 3 (infinitely long coil of rectangular cross-section with current of one ampere), Biot-Savart 
(8) can be written as: 

𝐵𝐵𝐵𝐵(𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) � � �
(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟����⃗ − (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧����⃗

�𝑙𝑙𝑙𝑙2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2
3

𝑧𝑧𝑧𝑧2

𝑧𝑧𝑧𝑧1

𝑟𝑟𝑟𝑟2

𝑟𝑟𝑟𝑟1

𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
∞

𝑙𝑙𝑙𝑙𝜑−∞

𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧. (9) 

By solving the integral (9), 𝑟𝑟𝑟𝑟 and 𝑧𝑧𝑧𝑧 components of the magnetic field are obtained: 
 

𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��  

+𝑘(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (10) 

 

𝐵𝐵𝐵𝐵𝑧𝑧𝑧𝑧 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟

��  

+𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟

�� + 4𝑧𝑧𝑧𝑧� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (11) 

𝑘𝑘𝑘𝑘 =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) . (12) 

After the calculation of magnetic field, the losses (equal to resistance since current in first coil is one ampere) due to 
proximity effect per unit length are calculated separately for each component of the magnetic field. For that purpose, 
simple, well-known expressions for eddy-current losses (per unit volume) in infinite planar plate of thickness 𝑡𝑡𝑡𝑡 and 
conductivity 𝜎𝜎𝜎𝜎 (page 154 in [12]) are used: 

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑𝜑
≈ 𝐺𝐺𝐺𝐺𝜑

⎣
⎢
⎢
⎡0.008618 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

�
3

+ 9.711 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 159.6𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 75.62

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
3

+ 35.03 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 131.3𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 77.74

−
1.07𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.5949

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2
− 0.5201𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.002404⎦
⎥
⎥
⎤

. (6) 

Above-mentioned expressions can be used to calculate the self-inductance. In that case, geometrical parameters are 
𝑟𝑟𝑟𝑟3 = 𝑟𝑟𝑟𝑟1 + 𝛥𝛥𝛥𝛥, 𝑟𝑟𝑟𝑟4 = 𝑟𝑟𝑟𝑟2 + 𝛥𝛥𝛥𝛥, 𝑧𝑧𝑧𝑧3 = 𝑧𝑧𝑧𝑧1 + 𝛥𝛥𝛥𝛥, and 𝑧𝑧𝑧𝑧4 = 𝑧𝑧𝑧𝑧2 + 𝛥𝛥𝛥𝛥. Small displacement 𝛥𝛥𝛥𝛥 is added to avoid singularities, which are 
explained in papers [6-7]. In this paper, that displacement is 𝛥𝛥𝛥𝛥 = 10−6. 

Expressions for 𝐺𝐺𝐺𝐺𝜑 and 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 are given in papers [6-7]. 

C. Resistance 

The resistances in the proposed model include DC resistance, and AC resistances that represent losses due to skin and 
proximity effects. The resistance per unit length that takes skin effect into account is calculated using the expression [13] 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ =
1

4𝜎𝜎𝜎𝜎(ℎ + 𝑤𝑤𝑤𝑤)2 �
ℎ
𝛿𝛿𝛿𝛿

sinh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + sin �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�

cosh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + cos �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�
+
𝑤𝑤𝑤𝑤
𝛿𝛿𝛿𝛿

sinh �2 ℎ𝛿𝛿𝛿𝛿� + sin �2 ℎ𝛿𝛿𝛿𝛿�

cosh �2 ℎ𝛿𝛿𝛿𝛿� + cos �2 ℎ𝛿𝛿𝛿𝛿�
+ 2� , (7) 

where 𝑤𝑤𝑤𝑤 and ℎ are width and height of the conductor, respectively. If the conductor consists of more separately insulated 
wires (e.g. continuously transposed conductor), resistance for each wire is calculated separately. The parameter 𝜎𝜎𝜎𝜎 is the 

electrical conductivity of conductor, and the parameter 𝛿𝛿𝛿𝛿 = � 1
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋µ𝜎𝜎𝜎𝜎

 is the skin depth of conductor. R matrix is calculated 

at arbitrarily chosen frequency 𝑓𝑓𝑓𝑓 = 10 kHz. 
To calculate the losses due to proximity effect, magnetic field at the position of another coil (𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) must be calculated. 

The geometry of windings is simplified to get simple mathematical expressions. The permeable core is neglected and the 
geometry of winding is assumed to be planar (see Fig. 3). Expressions for magnetic field are derived from Biot-Savart 
law: 

𝑩𝑩𝑩𝑩(𝒓𝒓𝒓𝒓) =
µ𝜑
4𝜋𝜋𝜋𝜋

�
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 × 𝒓𝒓𝒓𝒓′

|𝒓𝒓𝒓𝒓′|3
. (8) 

For the geometry shown in Fig 3 (infinitely long coil of rectangular cross-section with current of one ampere), Biot-Savart 
(8) can be written as: 

𝐵𝐵𝐵𝐵(𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) � � �
(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟����⃗ − (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧����⃗

�𝑙𝑙𝑙𝑙2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2
3

𝑧𝑧𝑧𝑧2

𝑧𝑧𝑧𝑧1

𝑟𝑟𝑟𝑟2

𝑟𝑟𝑟𝑟1

𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
∞

𝑙𝑙𝑙𝑙𝜑−∞

𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧. (9) 

By solving the integral (9), 𝑟𝑟𝑟𝑟 and 𝑧𝑧𝑧𝑧 components of the magnetic field are obtained: 
 

𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��  

+𝑘(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (10) 

 

𝐵𝐵𝐵𝐵𝑧𝑧𝑧𝑧 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟

��  

+𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟

�� + 4𝑧𝑧𝑧𝑧� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (11) 

𝑘𝑘𝑘𝑘 =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) . (12) 

After the calculation of magnetic field, the losses (equal to resistance since current in first coil is one ampere) due to 
proximity effect per unit length are calculated separately for each component of the magnetic field. For that purpose, 
simple, well-known expressions for eddy-current losses (per unit volume) in infinite planar plate of thickness 𝑡𝑡𝑡𝑡 and 
conductivity 𝜎𝜎𝜎𝜎 (page 154 in [12]) are used: 

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑𝜑
≈ 𝐺𝐺𝐺𝐺𝜑

⎣
⎢
⎢
⎡0.008618 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

�
3

+ 9.711 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 159.6𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 75.62

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
3

+ 35.03 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 131.3𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 77.74

−
1.07𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.5949

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2
− 0.5201𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.002404⎦
⎥
⎥
⎤

. (6) 

Above-mentioned expressions can be used to calculate the self-inductance. In that case, geometrical parameters are 
𝑟𝑟𝑟𝑟3 = 𝑟𝑟𝑟𝑟1 + 𝛥𝛥𝛥𝛥, 𝑟𝑟𝑟𝑟4 = 𝑟𝑟𝑟𝑟2 + 𝛥𝛥𝛥𝛥, 𝑧𝑧𝑧𝑧3 = 𝑧𝑧𝑧𝑧1 + 𝛥𝛥𝛥𝛥, and 𝑧𝑧𝑧𝑧4 = 𝑧𝑧𝑧𝑧2 + 𝛥𝛥𝛥𝛥. Small displacement 𝛥𝛥𝛥𝛥 is added to avoid singularities, which are 
explained in papers [6-7]. In this paper, that displacement is 𝛥𝛥𝛥𝛥 = 10−6. 

Expressions for 𝐺𝐺𝐺𝐺𝜑 and 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 are given in papers [6-7]. 

C. Resistance 

The resistances in the proposed model include DC resistance, and AC resistances that represent losses due to skin and 
proximity effects. The resistance per unit length that takes skin effect into account is calculated using the expression [13] 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ =
1

4𝜎𝜎𝜎𝜎(ℎ + 𝑤𝑤𝑤𝑤)2 �
ℎ
𝛿𝛿𝛿𝛿

sinh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + sin �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�

cosh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + cos �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�
+
𝑤𝑤𝑤𝑤
𝛿𝛿𝛿𝛿

sinh �2 ℎ𝛿𝛿𝛿𝛿� + sin �2 ℎ𝛿𝛿𝛿𝛿�

cosh �2 ℎ𝛿𝛿𝛿𝛿� + cos �2 ℎ𝛿𝛿𝛿𝛿�
+ 2� , (7) 

where 𝑤𝑤𝑤𝑤 and ℎ are width and height of the conductor, respectively. If the conductor consists of more separately insulated 
wires (e.g. continuously transposed conductor), resistance for each wire is calculated separately. The parameter 𝜎𝜎𝜎𝜎 is the 

electrical conductivity of conductor, and the parameter 𝛿𝛿𝛿𝛿 = � 1
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋µ𝜎𝜎𝜎𝜎

 is the skin depth of conductor. R matrix is calculated 

at arbitrarily chosen frequency 𝑓𝑓𝑓𝑓 = 10 kHz. 
To calculate the losses due to proximity effect, magnetic field at the position of another coil (𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) must be calculated. 

The geometry of windings is simplified to get simple mathematical expressions. The permeable core is neglected and the 
geometry of winding is assumed to be planar (see Fig. 3). Expressions for magnetic field are derived from Biot-Savart 
law: 

𝑩𝑩𝑩𝑩(𝒓𝒓𝒓𝒓) =
µ𝜑
4𝜋𝜋𝜋𝜋

�
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 × 𝒓𝒓𝒓𝒓′

|𝒓𝒓𝒓𝒓′|3
. (8) 

For the geometry shown in Fig 3 (infinitely long coil of rectangular cross-section with current of one ampere), Biot-Savart 
(8) can be written as: 

𝐵𝐵𝐵𝐵(𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) � � �
(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟����⃗ − (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧����⃗

�𝑙𝑙𝑙𝑙2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2
3

𝑧𝑧𝑧𝑧2

𝑧𝑧𝑧𝑧1

𝑟𝑟𝑟𝑟2

𝑟𝑟𝑟𝑟1

𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
∞

𝑙𝑙𝑙𝑙𝜑−∞

𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧. (9) 

By solving the integral (9), 𝑟𝑟𝑟𝑟 and 𝑧𝑧𝑧𝑧 components of the magnetic field are obtained: 
 

𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��  

+𝑘(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (10) 

 

𝐵𝐵𝐵𝐵𝑧𝑧𝑧𝑧 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟

��  

+𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟

�� + 4𝑧𝑧𝑧𝑧� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (11) 

𝑘𝑘𝑘𝑘 =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) . (12) 

After the calculation of magnetic field, the losses (equal to resistance since current in first coil is one ampere) due to 
proximity effect per unit length are calculated separately for each component of the magnetic field. For that purpose, 
simple, well-known expressions for eddy-current losses (per unit volume) in infinite planar plate of thickness 𝑡𝑡𝑡𝑡 and 
conductivity 𝜎𝜎𝜎𝜎 (page 154 in [12]) are used: 

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑𝜑
≈ 𝐺𝐺𝐺𝐺𝜑

⎣
⎢
⎢
⎡0.008618 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

�
3

+ 9.711 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 159.6𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 75.62

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
3

+ 35.03 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 131.3𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 77.74

−
1.07𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.5949

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2
− 0.5201𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.002404⎦
⎥
⎥
⎤

. (6) 

Above-mentioned expressions can be used to calculate the self-inductance. In that case, geometrical parameters are 
𝑟𝑟𝑟𝑟3 = 𝑟𝑟𝑟𝑟1 + 𝛥𝛥𝛥𝛥, 𝑟𝑟𝑟𝑟4 = 𝑟𝑟𝑟𝑟2 + 𝛥𝛥𝛥𝛥, 𝑧𝑧𝑧𝑧3 = 𝑧𝑧𝑧𝑧1 + 𝛥𝛥𝛥𝛥, and 𝑧𝑧𝑧𝑧4 = 𝑧𝑧𝑧𝑧2 + 𝛥𝛥𝛥𝛥. Small displacement 𝛥𝛥𝛥𝛥 is added to avoid singularities, which are 
explained in papers [6-7]. In this paper, that displacement is 𝛥𝛥𝛥𝛥 = 10−6. 

Expressions for 𝐺𝐺𝐺𝐺𝜑 and 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 are given in papers [6-7]. 

C. Resistance 

The resistances in the proposed model include DC resistance, and AC resistances that represent losses due to skin and 
proximity effects. The resistance per unit length that takes skin effect into account is calculated using the expression [13] 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ =
1

4𝜎𝜎𝜎𝜎(ℎ + 𝑤𝑤𝑤𝑤)2 �
ℎ
𝛿𝛿𝛿𝛿

sinh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + sin �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�

cosh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + cos �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�
+
𝑤𝑤𝑤𝑤
𝛿𝛿𝛿𝛿

sinh �2 ℎ𝛿𝛿𝛿𝛿� + sin �2 ℎ𝛿𝛿𝛿𝛿�

cosh �2 ℎ𝛿𝛿𝛿𝛿� + cos �2 ℎ𝛿𝛿𝛿𝛿�
+ 2� , (7) 

where 𝑤𝑤𝑤𝑤 and ℎ are width and height of the conductor, respectively. If the conductor consists of more separately insulated 
wires (e.g. continuously transposed conductor), resistance for each wire is calculated separately. The parameter 𝜎𝜎𝜎𝜎 is the 

electrical conductivity of conductor, and the parameter 𝛿𝛿𝛿𝛿 = � 1
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋µ𝜎𝜎𝜎𝜎

 is the skin depth of conductor. R matrix is calculated 

at arbitrarily chosen frequency 𝑓𝑓𝑓𝑓 = 10 kHz. 
To calculate the losses due to proximity effect, magnetic field at the position of another coil (𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) must be calculated. 

The geometry of windings is simplified to get simple mathematical expressions. The permeable core is neglected and the 
geometry of winding is assumed to be planar (see Fig. 3). Expressions for magnetic field are derived from Biot-Savart 
law: 

𝑩𝑩𝑩𝑩(𝒓𝒓𝒓𝒓) =
µ𝜑
4𝜋𝜋𝜋𝜋

�
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 × 𝒓𝒓𝒓𝒓′

|𝒓𝒓𝒓𝒓′|3
. (8) 

For the geometry shown in Fig 3 (infinitely long coil of rectangular cross-section with current of one ampere), Biot-Savart 
(8) can be written as: 

𝐵𝐵𝐵𝐵(𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) � � �
(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟����⃗ − (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧����⃗

�𝑙𝑙𝑙𝑙2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2
3

𝑧𝑧𝑧𝑧2

𝑧𝑧𝑧𝑧1

𝑟𝑟𝑟𝑟2

𝑟𝑟𝑟𝑟1

𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
∞

𝑙𝑙𝑙𝑙𝜑−∞

𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧. (9) 

By solving the integral (9), 𝑟𝑟𝑟𝑟 and 𝑧𝑧𝑧𝑧 components of the magnetic field are obtained: 
 

𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��  

+𝑘(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧

��� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (10) 

 

𝐵𝐵𝐵𝐵𝑧𝑧𝑧𝑧 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟

��  

+𝑘(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2 + (𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟)2) + 2(𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟) tan−1 �
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
𝑟𝑟𝑟𝑟𝜑 + 𝑟𝑟𝑟𝑟

�� + 4𝑧𝑧𝑧𝑧� |𝑟𝑟𝑟𝑟𝜑𝑟𝑟𝑟𝑟1
𝑟𝑟𝑟𝑟2 |𝑧𝑧𝑧𝑧𝜑𝑧𝑧𝑧𝑧1

𝑧𝑧𝑧𝑧2 , (11) 

𝑘𝑘𝑘𝑘 =
µ𝜑

4𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1)(𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧1) . (12) 

After the calculation of magnetic field, the losses (equal to resistance since current in first coil is one ampere) due to 
proximity effect per unit length are calculated separately for each component of the magnetic field. For that purpose, 
simple, well-known expressions for eddy-current losses (per unit volume) in infinite planar plate of thickness 𝑡𝑡𝑡𝑡 and 
conductivity 𝜎𝜎𝜎𝜎 (page 154 in [12]) are used: 

(6)

(7)

(8)

(9)

Bruno Jurišić, Zvonimir Jurković, Tomislav Župan, Mladen Marković, Hybrid Analytical-FEM Approach for Power Transformer Transient Analysis, Journal of Energy, 
vol. 73 Number 1 (2024), 8–13 
https://doi.org/10.37798/2024731512  
© 2023 Copyright for this paper by authors. Use permitted under Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License
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By solving the integral (9),  and  components of the magnetic 
field are obtained:

After the calculation of magnetic field, the losses (equal to re-
sistance since current in first coil is one ampere) due to proximity 
effect per unit length are calculated separately for each component 
of the magnetic field. For that purpose, simple, well-known expre-
ssions for eddy-current losses (per unit volume) in infinite planar 
plate of thickness t and conductivity σ (page 154 in [12]) are used:

By combining the expressions (10-14), the resistance per unit 
length is calculated as:

III. Measurements on Power Transformer 
Winding Model

To verify the proposed methodology, the overvoltages are me-
asured on the power transformer winding model (see Fig. 4). The 
model includes two axially stacked disc windings that are pressed 
between two steel plates, with no tank or oil. The upper winding 
has 48 discs and 9 conductors in disc, whereas the bottom winding 
has 48 discs and 10 conductors in disc. The standard impulse test 
wave 1.2/50 µs is generated using the surge generator Haefely type 
481. To enable measurement of voltage along the winding, insu-
lation is removed and copper terminals are soldered in 48 places. 
Then, voltage waveforms at these terminals are measured using 
the oscilloscope Tektronix DPO 4054 and measuring probes. The 
measurement setup is illustrated in Fig. 5.

Fig. 4.  The winding model

Fig. 1.  The geometry of two circular coaxial coils with rectangular 
cross-sections

Fig. 2.  The examples of G function for different coil’s geometries

Fig. 3.  The geometry of model for calculation of magnetic field

� 𝐺𝐺𝐺𝐺(𝜑𝜑𝜑𝜑)𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑𝜑𝜑
≈ 𝐺𝐺𝐺𝐺𝜑

⎣
⎢
⎢
⎡0.008618 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

�
3

+ 9.711 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 159.6𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 75.62

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
3

+ 35.03 �𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2

+ 131.3𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
+ 77.74

−
1.07𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.5949

�𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑
�
2
− 0.5201𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝜑

− 0.002404⎦
⎥
⎥
⎤

. (6) 

Above-mentioned expressions can be used to calculate the self-inductance. In that case, geometrical parameters are 
𝑟𝑟𝑟𝑟3 = 𝑟𝑟𝑟𝑟1 + 𝛥𝛥𝛥𝛥, 𝑟𝑟𝑟𝑟4 = 𝑟𝑟𝑟𝑟2 + 𝛥𝛥𝛥𝛥, 𝑧𝑧𝑧𝑧3 = 𝑧𝑧𝑧𝑧1 + 𝛥𝛥𝛥𝛥, and 𝑧𝑧𝑧𝑧4 = 𝑧𝑧𝑧𝑧2 + 𝛥𝛥𝛥𝛥. Small displacement 𝛥𝛥𝛥𝛥 is added to avoid singularities, which are 
explained in papers [6-7]. In this paper, that displacement is 𝛥𝛥𝛥𝛥 = 10−6. 

Expressions for 𝐺𝐺𝐺𝐺𝜑 and 𝐺𝐺𝐺𝐺𝜋𝜋𝜋𝜋 are given in papers [6-7]. 

C. Resistance 

The resistances in the proposed model include DC resistance, and AC resistances that represent losses due to skin and 
proximity effects. The resistance per unit length that takes skin effect into account is calculated using the expression [13] 

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ =
1

4𝜎𝜎𝜎𝜎(ℎ + 𝑤𝑤𝑤𝑤)2 �
ℎ
𝛿𝛿𝛿𝛿

sinh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + sin �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�

cosh �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿� + cos �2𝑤𝑤𝑤𝑤𝛿𝛿𝛿𝛿�
+
𝑤𝑤𝑤𝑤
𝛿𝛿𝛿𝛿

sinh �2 ℎ𝛿𝛿𝛿𝛿� + sin �2 ℎ𝛿𝛿𝛿𝛿�

cosh �2 ℎ𝛿𝛿𝛿𝛿� + cos �2 ℎ𝛿𝛿𝛿𝛿�
+ 2� , (7) 

where 𝑤𝑤𝑤𝑤 and ℎ are width and height of the conductor, respectively. If the conductor consists of more separately insulated 
wires (e.g. continuously transposed conductor), resistance for each wire is calculated separately. The parameter 𝜎𝜎𝜎𝜎 is the 

electrical conductivity of conductor, and the parameter 𝛿𝛿𝛿𝛿 = � 1
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋µ𝜎𝜎𝜎𝜎

 is the skin depth of conductor. R matrix is calculated 

at arbitrarily chosen frequency 𝑓𝑓𝑓𝑓 = 10 kHz. 
To calculate the losses due to proximity effect, magnetic field at the position of another coil (𝑟𝑟𝑟𝑟𝜑, 𝑧𝑧𝑧𝑧𝜑) must be calculated. 

The geometry of windings is simplified to get simple mathematical expressions. The permeable core is neglected and the 
geometry of winding is assumed to be planar (see Fig. 3). Expressions for magnetic field are derived from Biot-Savart 
law: 

𝑩𝑩𝑩𝑩(𝒓𝒓𝒓𝒓) =
µ𝜑
4𝜋𝜋𝜋𝜋

�
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 × 𝒓𝒓𝒓𝒓′

|𝒓𝒓𝒓𝒓′|3
. (8) 

For the geometry shown in Fig 3 (infinitely long coil of rectangular cross-section with current of one ampere), Biot-Savart 
(8) can be written as: 
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�𝑙𝑙𝑙𝑙2 + (𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2
3

𝑧𝑧𝑧𝑧2

𝑧𝑧𝑧𝑧1

𝑟𝑟𝑟𝑟2

𝑟𝑟𝑟𝑟1

𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
∞

𝑙𝑙𝑙𝑙𝜑−∞

𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧. (9) 

By solving the integral (9), 𝑟𝑟𝑟𝑟 and 𝑧𝑧𝑧𝑧 components of the magnetic field are obtained: 
 

𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑘𝑘 𝑘𝑘(𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙((𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟)2 + (𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧)2) + 2(𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧) tan−1 �
𝑟𝑟𝑟𝑟𝜑 − 𝑟𝑟𝑟𝑟
𝑧𝑧𝑧𝑧𝜑 − 𝑧𝑧𝑧𝑧
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After the calculation of magnetic field, the losses (equal to resistance since current in first coil is one ampere) due to 
proximity effect per unit length are calculated separately for each component of the magnetic field. For that purpose, 
simple, well-known expressions for eddy-current losses (per unit volume) in infinite planar plate of thickness 𝑡𝑡𝑡𝑡 and 
conductivity 𝜎𝜎𝜎𝜎 (page 154 in [12]) are used: 

(10)

(11)

(12)

(13)

(14)
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IV. Mathematical Model Results
The overvoltages along the winding model are calculated using 

the methodology proposed in Section II. The results are compared 
against the measurements. Then, the visualization of voltages in 
the winding, using color mapping, is presented.

A. Model verification
The calculated voltage waveforms at three terminals and dis-

tribution of maximum voltages to ground along the winding are 
compared against the measurements. The comparison is shown in 
Fig. 6.

The error for maximum values of voltages, shown in Fig. 6, are 
given in Table I.

Table I.

Relative Errors For Maximum Values of Voltages

   Error [%]

  Terminal 7 waveform   -1.2

  Terminal 17 waveform   -4.6

  Terminal 27 waveform    1.7

  Distribution along winding  -3.2

B. Visualization of voltages in the winding
The proposed model enables the calculation of voltage wave-

forms for every single turn. Such detailed results can be represen-
ted in various ways, numerically and visually. Spatial distribution 
of voltage can be represented visually for the entire winding using 
color mapping. Maximum voltages to ground and voltages betwe-
en adjacent turns (radially, axially and diagonally) of interleaved 
winding with radial and axial channel are shown in Fig. 7. Except 
maximum values, voltage values can be shown for every time step. 
By taking series of images with voltage values for every time step, 
animation can be generated that shows behavior of voltage in spa-
ce and time (for example, propagation and reflections of transient 
wave can be shown).

𝑝𝑝𝑝𝑝 =
(2𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓)2𝐵𝐵𝐵𝐵2𝑡𝑡𝑡𝑡2𝜎𝜎𝜎𝜎

24
. (13) 

By combining the expressions (10-14), the resistance per unit length is calculated as: 

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ =
𝜎𝜎𝜎𝜎𝜋𝜋𝜋𝜋2𝑓𝑓𝑓𝑓2�𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟2ℎ3𝑤𝑤𝑤𝑤 + 𝐵𝐵𝐵𝐵𝑧𝑧𝑧𝑧2𝑤𝑤𝑤𝑤3ℎ�

6
. (14) 

  
Fig. 1.  The geometry of two circular coaxial coils 

with rectangular cross-sections. Fig. 2.  The examples of G function for different coil’s geometries. 

 
Fig. 3.  The geometry of model for calculation of magnetic field. 

 
III. MEASUREMENTS ON POWER TRANSFORMER WINDING MODEL 

To verify the proposed methodology, the overvoltages are measured on the power transformer winding model (see 
Fig. 4). The model includes two axially stacked disc windings that are pressed between two steel plates, with no tank or 
oil. The upper winding has 48 discs and 9 conductors in disc, whereas the bottom winding has 48 discs and 10 conductors 
in disc. The standard impulse test wave 1.2/50 µs is generated using the surge generator Haefely type 481. To enable 
measurement of voltage along the winding, insulation is removed and copper terminals are soldered in 48 places. Then, 
voltage waveforms at these terminals are measured using the oscilloscope Tektronix DPO 4054 and measuring probes. 
The measurement setup is illustrated in Fig. 5. 

  

Fig. 4.  The winding model. Fig. 5.  The measurement setup. 
Fig. 5.  The measurement setupIV. MATHEMATICAL MODEL RESULTS 

The overvoltages along the winding model are calculated using the methodology proposed in Section II. The results 
are compared against the measurements. Then, the visualization of voltages in the winding, using color mapping, is 
presented. 

A. Model verification 

The calculated voltage waveforms at three terminals and distribution of maximum voltages to ground along the 
winding are compared against the measurements. The comparison is shown in Fig. 6. 

  

(a) (b) 

  

(c) (d) 

Fig. 6. The voltage waveforms at terminals 7 (a), 17 (b), 27 (c), and distribution of maximum voltages to ground along the 
winding (d). 

The error for maximum values of voltages, shown in Fig. 6, are given in Table I. 

TABLE I.  RELATIVE ERRORS FOR MAXIMUM VALUES OF VOLTAGES 

 Error [%] 

Terminal 7 waveform -1.2 
Terminal 17 waveform -4.6 

Terminal 27 waveform 1.7 

Distribution along winding -3.2 

B. Visualization of voltages in the winding 

The proposed model enables the calculation of voltage waveforms for every single turn. Such detailed results can be 
represented in various ways, numerically and visually. Spatial distribution of voltage can be represented visually for the 
entire winding using color mapping. Maximum voltages to ground and voltages between adjacent turns (radially, axially 
and diagonally) of interleaved winding with radial and axial channel are shown in Fig. 7. Except maximum values, voltage 
values can be shown for every time step. By taking series of images with voltage values for every time step, animation 
can be generated that shows behavior of voltage in space and time (for example, propagation and reflections of transient 
wave can be shown). 

 
 

Fig. 6. The voltage waveforms at terminals 7 (a), 17 (b), 27 (c), and distribution of maximum voltages to ground along the winding (d)
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(a) (b) (c) (d) 

 

(e) 

Fig. 7. The representation of maximum voltages to ground (a), and between radially (b), axially (c) and diagonally (d) adjacent turns. 
Propagation of transient wave is shown by series of images with instantaneous values of voltage (e). 

Fig. 7. The representation of maximum voltages to ground (a), and between radially (b), axially (c) and diagonally (d) adjacent turns. Propagation of 
transient wave is shown by series of images with instantaneous values of voltage (e)
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V. Conclusion
The methodology for calculation of transient overvoltages in a 

power transformer is presented in the paper. The transformer win-
ding is modeled down to the level of turn, using lumped RLC para-
meters. The model is solved in time domain using Dommel’s met-
hod. The capacitances are calculated using simple analytical mo-
dels and correction factors based on the 2D FEM. The inductances 
and resistances are calculated using analytical models that neglect 
the permeable core, which is valid when calculating high frequ-
ency transients. The proposed methodology enables fast calcula-
tions even with complicated transformer winding geometries with 
thousands of turns. The calculation of RLC parameters is in a time 
range of seconds, whereas the calculation in the time domain is in 
a time range of tens of seconds. That makes the proposed metho-
dology suitable for application in the transformer design process.

The mathematical expressions for the calculation of inductan-
ces are derived using the Green’s function for vector magnetic 
potential. To derive the expressions, multiple integral with respect 
to five variables must be solved. In the existing literature, integral 
is solved with respect to four variables, whereas numerical inte-
gration with respect to the fifth variable is necessary. To avoid 
numerical integration, approximation of the unsolved integral is 
introduced. The resistances are calculated using simple analytical 
expressions from the existing literature. However, the model for 
calculation of the magnetic field is derived from the Biot-Savart 
law with assumption of planar geometry of windings. The closed-
form expressions for inductances and resistances, with no need for 
numerical integration, allow very fast calculations.

The measurements of overvoltage distribution on the experi-
mental winding model are done to verify the proposed approach. 
The comparison between calculation and measurement results has 
shown good accuracy of the proposed model, as in the worst case 
the amplitude error is less than five percent. The possibility of de-
tailed visualization of voltage in the winding is presented. Except 
standard representation of results, such as numerical data or 2D 
plots of waveforms, detailed visualization of voltages in the win-
dings or between the windings can be a very helpful tool for power 
transformer design engineers.
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