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SUMMARY
Within the standard IEEE C37.118 applications and proposed hardware structure of a phasor measurement unit (PMU) are described. This paper pre-
sents the concept of the system for measuring and transferring synchrophasors from a theoretical aspect. Synchrophasor algorithms are developed 
in MATLAB/Simulink for the purpose of easier verification and hardware deployment on today’s market available and affordable real time develop-
ment kits. Analysis of the synchrophasor measurement process is performed gradually. Firstly, by defining the synchrophasor based on three-phase 
to αβ-transformation and then introducing a discrete Fourier transform (DFT) based on synchrophasor estimation algorithm. Later, accompanying 
adverse effects resulting from its application are analyzed by means of simulation. To increase accuracy and improve estimation algorithm interpo-
lated discrete Fourier transform (IpDFT) with and without windowing technique is used. To further optimize algorithm performance convolution sum 
in recursive form has been implemented instead of classical DFT approach. This study was carried out in order to validate described measurement 
system for the monitoring of transients during island operation of a local power electric system. Finally, simulation and experimental results including 
error analysis are also presented.
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INTRODUCTION
The development of information and communication technology has pro-
vided preconditions for automatization of the electric power system. Mo-
reover, significant progress in managing and controlling the operation of 
the complete system as well as improving the quality and reliability of the 
electricity supply have also been achieved.

The classic approach used to manage and monitor electric power system 
is the supervisory control and data acquisition (SCADA) system. It is a 
system whose upgrades has reached their limits and are not so ‘’open’’ 
to the latest technology. Therefore, intensive work on developing new re-
mote management systems based on smart grid solutions is still ongo-
ing process. Remote control and monitoring systems play a major role 
in determining optimal solutions for failures in electrical power systems, 
which significantly reduces investment and maintenance costs, as well as 
reducing losses due to interruptions and undelivered electricity. The quality 
of electricity is determined by the following parameters: voltage quality, 
supply reliability and service quality. Because of the increasingly stringent 

requirements for electricity quality, intelligent electronic device (IED) deve-
lopment is indispensable. Some of IEDs used for this purpose are: remote 
terminal unit (RTU), digital multimeters, power quality (PQ) monitors, etc.

Currently, the latest and most promising version of the IED is a phasor 
measurement unit (PMU). PMU represent a technology that has enabled 
insight into the real-time (RT) electrical power system dynamics [1], [2]. In 
this paper PMU algorithms for synchrophasor estimation are developed in 
MATLAB/Simulink.

The main task of the algorithm is to estimate parameters of the funda-
mental tone of the signal (amplitude, frequency and phase) [3]. Discrete 
Fourier transform (DFT) is the most commonly used method for identifying 
the fundamental tone of the signal [4], [5]. Generally, the advantages of the 
DFT approach are low computational complexity and harmonic rejection, 
while the drawbacks are spectral leakage and aliasing. In this paper to 
counteract these effects Fourier analysis and interpolated discrete Fourier 
transform (IpDFT) have been used [6]. This algorithm combined with and 
without use of windowing technique as well as use of convolution sum in 
recursive form will be described in the following sections.
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DIGITAL SIGNAL PROCESSING
DFT algorithms

Main steps when applying a DFT-based digital signal processing tech-
nique to a continuous signal x(t) are shown in Fig. 1.

Block diagram of digital signal processing [3].

The Fourier transform (FT) of a continuous time-function x(t) is defined as 
follows

  (1)

As can be seen, FT is used to transform a continuous time-domain func-
tion x(t) to a continuous frequency-domain function X(f). In order to imple-
ment signal processing algorithms into a digital system, conversion of an 
analog signal to its digital representation must be performed [3].

Therefore, the discrete-time FT (DTFT) allows a transformation of a dis-
crete sequence of infinite length x(n) into a continuous frequency-domain 
function

  (2)

Since upper expression is continuous and infinite it is not appropriate for 
digital signal processing and cannot be applied for real-time applications. 
The discrete Fourier series (DFS) is another way to transform an infinite 
continuous periodic sequence in the frequency domain. When the DFS 
is used to transform a generic discrete periodic finite-length sequence of 
samples, it is called the DFT [8].

Scalar to vector representation of three-phase system

For the sake of simplification, we assume balanced three-phase system of 
instantaneous voltages

  (3)

where A(t) is the arbitrary magnitude function of time, while phase angle 
function may be expressed as

  (4)

where (0) is the initial phase angle value, and f(t) is the arbitrary frequency 
function of time. For the purpose of following analysis, we assume

  (5)

where fo is the average grid frequency assumed to be equal to 50 Hz, ΔF 
is the peak value of frequency deviation, and Ω is the angular modulation 
frequency of the fundamental harmonic fo, respectively. If (5) is inserted 
in (4), assuming zero phase initial value and after simplification, we obtain

  (6)

Since balanced three-phase system is assumed, it is convenient to apply 
αβ-transformation on abc variables, which is equal to reduction of three 
to two-phase system [9]. Also known as the Clarke transformation, after 
applying it to scalar representation (3) the following complex voltage time 
function, i.e. synchrophasor, may be written

  (7)

where the real and imaginary parts on the right-hand side of equation 
correspond to the transformed α and β voltage components, respecti-

vely. Instead of using rectangular coordinate system in (7) for the ease of 
analysis more appropriate is polar coordinate system that gives

  (8)

Thus, one should observe that for the three-phase system αβ-
transformation is equal to the Hilbert’s transform for single phase system. 
In other words, any real signal can be transformed using Hilbert’s tran-
sform into a so-called analytical signal [8]. Additionally, (8) is equivalent 
to the reference signal used for space vector modulation control of three-
phase inverters [9], [10].

Discretization of continuous time signals

A discrete-time signal of (8), produced by a sampling process characteri-
zed with the sampling period Ts, is

 (9)

where 0 ≤ n ≤ N-1 is the sample number, and N is the total number of 
observed samples. Hence, the input signal is sliced in blocks containing 
N samples.

DFT of the observed signal is calculated in discrete points k = 0, ..., N-1 
according to the following expression

  (10)

For the case of pure sinusoidal three-phase system with fundamental pe-
riod that is an integer multiple of the sample period (To = NTs) only the 
fundamental harmonic appears in the frequency spectrum as is shown in 
Fig. 2. When the harmonic fundamental period is not equal to the length 
of observed signal block sequence spectral leakage occurs even in a case 
when only a one tone is given as is illustrated in Fig. 3.

Fig 2.Signal spectrum without spectral leakage.

Fig 3. Signal spectrum with spectral leakage.
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Fig. 1. Block diagram of digital signal processing [3]. 

The Fourier transform (FT) of a continuous time-function 
x(t) is defined as follows 

 




 dttxfX ft2je)()(  (1) 

 As can be seen, FT is used to transform a continuous 
time-domain function x(t) to a continuous frequency-domain 
function X(f). In order to implement signal processing 
algorithms into a digital system, conversion of an analog 
signal to its digital representation must be performed [3]. 
 Therefore, the discrete-time FT (DTFT) allows a 
transformation of a discrete sequence of infinite length x(n) 
into a continuous frequency-domain function 
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 Since upper expression is continuous and infinite it is not 
appropriate for digital signal processing and cannot be 
applied for real-time applications. The discrete Fourier series 
(DFS) is another way to transform an infinite continuous 
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where A(t) is the arbitrary magnitude function of time, while 
phase angle function may be expressed as 
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where ϕ(0) is the initial phase angle value, and f(t) is the 
arbitrary frequency function of time. For the purpose of 
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where fo is the average grid frequency assumed to be equal to 
50 Hz, ΔF is the peak value of frequency deviation, and Ω is 
the angular modulation frequency of the fundamental 
harmonic fo, respectively. If (5) is inserted in (4), assuming 
zero phase initial value and after simplification, we obtain 
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 Since balanced three-phase system is assumed, it is 
convenient to apply αβ-transformation on abc variables, 
which is equal to reduction of three to two-phase system [9]. 
Also known as the Clarke transformation, after applying it to 
scalar representation (3) the following complex voltage time 
function, i.e. synchrophasor, may be written 
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transformation is equal to the Hilbert's transform for single 
phase system. In other words, any real signal can be 
transformed using Hilbert's transform into a so-called 
analytical signal [8]. Additionally, (8) is equivalent to the 
reference signal used for space vector modulation control of 
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C. Discretization of continuous time signals 
 A discrete-time signal of (8), produced by a sampling 
process characterized with the sampling period Ts, is 
          sso nTFnTfnAnv  sin/2jexp  (9) 

where 0 ≤ n ≤ N-1 is the sample number, and N is the total 
number of observed samples. Hence, the input signal is 
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 For the case of pure sinusoidal three-phase system with 
fundamental period that is an integer multiple of the sample 
period (To = N‧ Ts) only the fundamental harmonic appears 
in the frequency spectrum as is shown in Fig. 2. When the 
harmonic fundamental period is not equal to the length of 
observed signal block sequence spectral leakage occurs even 
in a case when only a one tone is given as is illustrated in 
Fig. 3. 

 
Fig. 2. Signal spectrum without spectral leakage. 

 
Fig. 3. Signal spectrum with spectral leakage. 
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transformed using Hilbert's transform into a so-called 
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interpolation formulas that can be used to derive the actual 
signal frequency from such a spectrum. The only 
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where A(t) is the arbitrary magnitude function of time, while 
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number of samples, i.e. it is not equal to the voltage 
fundamental period, leakage occurs. Because of that, the 
main tone of the signal is located between two consecutive 
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to obtain accurate magnitude and frequency value of the 
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interpolation formulas that can be used to derive the actual 
signal frequency from such a spectrum. The only 
requirement is that there is only a one frequency component 
in the observed band. 
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through three points and search for its maximum. The 
parabola equation used to estimate voltage magnitude is 
defined as follows 
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Interpolation algorithm

If the length of window does not contain an integer number of samples, i.e. 
it is not equal to the voltage fundamental period, leakage occurs. Because 
of that, the main tone of the signal is located between two consecutive DFT 
bins. For a such case, interpolation algorithms are used to obtain accurate 
magnitude and frequency value of the fundamental harmonic. In literature 
one can find a variety of interpolation formulas that can be used to derive 
the actual signal frequency from such a spectrum. The only requirement is 
that there is only a one frequency component in the observed band.

The simplest interpolation technique is to fit the parabola through three po-
ints and search for its maximum. The parabola equation used to estimate 
voltage magnitude is defined as follows

  (11)

where λ is the intermediate variable in auxiliary coordinate system used 
to determine the exact frequency of the fundamental harmonic. To deter-
mine parabolic coefficients (a, b, c), system of three equations with three 
unknowns must be solved
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where km is the sample index of the DFT’s spectrum characterized by 
the magnitude |V[km]| of the middle frequency bin as is designated in Fig. 
4. |V[km–1]| is the neighboring tone on the left side, while |V[km+1]| is the 
neighboring tone on the right side.

Square matrix on the left side of (12) takes the simplest form if the auxi-
liary ordinate (λ = 0) passes through the middle frequency bin (km) and 
becomes

  (13)

To obtain solution of (12) one should calculate the inverse matrix of (13)
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after which determination of parabola coefficients is straight forward
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The maximum of the parabola (11) can be founded when its first derivative 
equals zero
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where fractional term
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must satisfy |λm| < 1. Once fractional term is known the maximum of the 
parabola is found for sample
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as is illustrated in Fig. 4.

Fig 4. Illustration of parabola interpolation algorithm.

If we assume that duration of observed signal block sequence is equal to 
40 ms, the DFT frequency resolution equals 25 Hz. This results with 25, 
50 and 75 Hz bins on the frequency axis. Since interesting component 
of grid voltage is usually in vicinity of 50 Hz there is no need to count FFT 
at all points except in, for instance, 49, 50 and 51 Hz bins as is shown in 
Fig. 4. Instead of using a one second duration of signal block sequence to 
obtain frequency resolution of 1 Hz one can use the following convolution 
expression
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to obtain corresponding frequency bins where M = {49, 50, 51}. The main 
advantage of (19) in comparison to DFT calculation is a shorter signal pro-
cessing time since only three bins need to be processed and the length of 
block sequence needs to be at least 20 ms.

Windowing technique

To avoid consequences of spectral leakage and to improve accuracy of 
voltage magnitude and frequency estimated values a windowing technique 
is utilized [3], [7], [8]. Instead of (10), DFT spectrum of observed data block 
may be computed using a preselected windowing function as follows
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where w[n] is usually the discrete Hanning windowing function that is used 
to extract a portion of the infinite length original sequence, and B is the 
DFT’s normalization factor

  (21)

It is important to note that fractional correction term λm is more accurate 
when windowing technique is applied. However, authors’ focus is on how 
to find the correction term for determining the “accurate” frequency of the 
fundamental spectrum tone using computationally the most effective al-
gorithm, which rectangular window is in comparison to Hanning window. 
This approach gives satisfactory accuracy and responsiveness as will be 
shown later in the paper.

DESCRIPTION OF MODEL
Performance analysis of estimation algorithms has been carried out in MA-
TLAB/Simulink environment by xPC Target model shown in Fig. 7 [11]. 
Presented model enables user to perform pure simulations on local (Host) 
computer as well as to perform rapid prototyping, i.e. hardware-in-the-lo-
op testing on remote (Target) computer equipped with I/O hardware units. 
The mode of operation depends entirely on position of the two manual 
switches shown in Fig. 7.

The model consists of three parts. The first part (middle of Fig. 7.) com-
prises of setpoint magnitude and frequency generator in accordance with 
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where A(t) is the arbitrary magnitude function of time, while 
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Thus, one should observe that for the three-phase system αβ-
transformation is equal to the Hilbert's transform for single 
phase system. In other words, any real signal can be 
transformed using Hilbert's transform into a so-called 
analytical signal [8]. Additionally, (8) is equivalent to the 
reference signal used for space vector modulation control of 
three-phase inverters [9], [10]. 
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number of observed samples. Hence, the input signal is 
sliced in blocks containing N samples. 
 DFT of the observed signal is calculated in discrete 
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interpolation formulas that can be used to derive the actual 
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defined as follows 
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where λ is the intermediate variable in auxiliary coordinate 
system used to determine the exact frequency of the 
fundamental harmonic. To determine parabolic coefficients 
(a, b, c), system of three equations with three unknowns 
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where km is the sample index of the DFT's spectrum 
characterized by the magnitude |V[km]| of the middle 
frequency bin as is designated in Fig. 4. |V[km–1]| is the 
neighboring tone on the left side, while |V[km+1]| is the 
neighboring tone on the right side. 
 Square matrix on the left side of (12) takes the simplest 
form if the auxiliary ordinate (λ = 0) passes through the 
middle frequency bin (km) and becomes 
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To obtain solution of (12) one should calculate the inverse 
matrix of (13) 
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after which determination of parabola coefficients is straight 
forward 
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 The maximum of the parabola (11) can be founded when 
its first derivative equals zero 
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where fractional term 
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must satisfy |λm| < 1. Once fractional term is known the 
maximum of the parabola is found for sample 
 mmpeak kk   (18) 
as is illustrated in Fig. 4. 

 
Fig. 4. Illustration of parabola interpolation algorithm. 

 If we assume that duration of observed signal block 
sequence is equal to 40 ms, the DFT frequency resolution 
equals 25 Hz. This results with 25, 50 and 75 Hz bins on the 

frequency axis. Since interesting component of grid voltage 
is usually in vicinity of 50 Hz there is no need to count FFT 
at all points except in, for instance, 49, 50 and 51 Hz bins as 
is shown in Fig. 4. Instead of using a one second duration of 
signal block sequence to obtain frequency resolution of 1 Hz 
one can use the following convolution expression 
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to obtain corresponding frequency bins where M = {49, 50, 
51}. The main advantage of (19) in comparison to DFT 
calculation is a shorter signal processing time since only 
three bins need to be processed and the length of block 
sequence needs to be at least 20 ms. 

E. Windowing technique 
 To avoid consequences of spectral leakage and to 
improve accuracy of voltage magnitude and frequency 
estimated values a windowing technique is utilized [3], [7], 
[8]. Instead of (10), DFT spectrum of observed data block 
may be computed using a preselected windowing function as 
follows 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 

 





1

0
][

N

n
nwB  (21) 

 It is important to note that fractional correction term λm is 
more accurate when windowing technique is applied. 
However, authors’ focus is on how to find the correction 
term for determining the "accurate" frequency of the 
fundamental spectrum tone using computationally the most 
effective algorithm, which rectangular window is in 
comparison to Hanning window. This approach gives 
satisfactory accuracy and responsiveness as will be shown 
later in the paper. 

III. DESCRIPTION OF MODEL 
 Performance analysis of estimation algorithms has been 
carried out in MATLAB/Simulink environment by xPC 
Target model shown in Fig. 7 [11]. Presented model enables 
user to perform pure simulations on local (Host) computer as 
well as to perform rapid prototyping, i.e. hardware-in-the-
loop testing on remote (Target) computer equipped with I/O 
hardware units. The mode of operation depends entirely on 
position of the two manual switches shown in Fig. 7. 
 The model consists of three parts. The first part (middle 
of Fig. 7.) comprises of setpoint magnitude and frequency 
generator in accordance with (4)-(9). The main task of this 
part is to generate cosine and sine reference signals with 
arbitrary magnitude and frequency that acts as a rough 
approximation of the actual situation in the real power grid. 
At the same time these signals are also connected with 
analog output (D/A) block so they can be monitored as 
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where km is the sample index of the DFT's spectrum 
characterized by the magnitude |V[km]| of the middle 
frequency bin as is designated in Fig. 4. |V[km–1]| is the 
neighboring tone on the left side, while |V[km+1]| is the 
neighboring tone on the right side. 
 Square matrix on the left side of (12) takes the simplest 
form if the auxiliary ordinate (λ = 0) passes through the 
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calculation is a shorter signal processing time since only 
three bins need to be processed and the length of block 
sequence needs to be at least 20 ms. 

E. Windowing technique 
 To avoid consequences of spectral leakage and to 
improve accuracy of voltage magnitude and frequency 
estimated values a windowing technique is utilized [3], [7], 
[8]. Instead of (10), DFT spectrum of observed data block 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 
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 It is important to note that fractional correction term λm is 
more accurate when windowing technique is applied. 
However, authors’ focus is on how to find the correction 
term for determining the "accurate" frequency of the 
fundamental spectrum tone using computationally the most 
effective algorithm, which rectangular window is in 
comparison to Hanning window. This approach gives 
satisfactory accuracy and responsiveness as will be shown 
later in the paper. 
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Target model shown in Fig. 7 [11]. Presented model enables 
user to perform pure simulations on local (Host) computer as 
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generator in accordance with (4)-(9). The main task of this 
part is to generate cosine and sine reference signals with 
arbitrary magnitude and frequency that acts as a rough 
approximation of the actual situation in the real power grid. 
At the same time these signals are also connected with 
analog output (D/A) block so they can be monitored as 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
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where km is the sample index of the DFT's spectrum 
characterized by the magnitude |V[km]| of the middle 
frequency bin as is designated in Fig. 4. |V[km–1]| is the 
neighboring tone on the left side, while |V[km+1]| is the 
neighboring tone on the right side. 
 Square matrix on the left side of (12) takes the simplest 
form if the auxiliary ordinate (λ = 0) passes through the 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 
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where km is the sample index of the DFT's spectrum 
characterized by the magnitude |V[km]| of the middle 
frequency bin as is designated in Fig. 4. |V[km–1]| is the 
neighboring tone on the left side, while |V[km+1]| is the 
neighboring tone on the right side. 
 Square matrix on the left side of (12) takes the simplest 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 
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where km is the sample index of the DFT's spectrum 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 
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where km is the sample index of the DFT's spectrum 
characterized by the magnitude |V[km]| of the middle 
frequency bin as is designated in Fig. 4. |V[km–1]| is the 
neighboring tone on the left side, while |V[km+1]| is the 
neighboring tone on the right side. 
 Square matrix on the left side of (12) takes the simplest 
form if the auxiliary ordinate (λ = 0) passes through the 
middle frequency bin (km) and becomes 
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To obtain solution of (12) one should calculate the inverse 
matrix of (13) 
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as is illustrated in Fig. 4. 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 
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where km is the sample index of the DFT's spectrum 
characterized by the magnitude |V[km]| of the middle 
frequency bin as is designated in Fig. 4. |V[km–1]| is the 
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neighboring tone on the right side. 
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to obtain corresponding frequency bins where M = {49, 50, 
51}. The main advantage of (19) in comparison to DFT 
calculation is a shorter signal processing time since only 
three bins need to be processed and the length of block 
sequence needs to be at least 20 ms. 
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improve accuracy of voltage magnitude and frequency 
estimated values a windowing technique is utilized [3], [7], 
[8]. Instead of (10), DFT spectrum of observed data block 
may be computed using a preselected windowing function as 
follows 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 
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where km is the sample index of the DFT's spectrum 
characterized by the magnitude |V[km]| of the middle 
frequency bin as is designated in Fig. 4. |V[km–1]| is the 
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neighboring tone on the right side. 
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to obtain corresponding frequency bins where M = {49, 50, 
51}. The main advantage of (19) in comparison to DFT 
calculation is a shorter signal processing time since only 
three bins need to be processed and the length of block 
sequence needs to be at least 20 ms. 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 
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where km is the sample index of the DFT's spectrum 
characterized by the magnitude |V[km]| of the middle 
frequency bin as is designated in Fig. 4. |V[km–1]| is the 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 
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where km is the sample index of the DFT's spectrum 
characterized by the magnitude |V[km]| of the middle 
frequency bin as is designated in Fig. 4. |V[km–1]| is the 
neighboring tone on the left side, while |V[km+1]| is the 
neighboring tone on the right side. 
 Square matrix on the left side of (12) takes the simplest 
form if the auxiliary ordinate (λ = 0) passes through the 
middle frequency bin (km) and becomes 
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To obtain solution of (12) one should calculate the inverse 
matrix of (13) 
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after which determination of parabola coefficients is straight 
forward 
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 The maximum of the parabola (11) can be founded when 
its first derivative equals zero 
 02 bc m  (16) 

where fractional term 
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must satisfy |λm| < 1. Once fractional term is known the 
maximum of the parabola is found for sample 
 mmpeak kk   (18) 
as is illustrated in Fig. 4. 

 
Fig. 4. Illustration of parabola interpolation algorithm. 

 If we assume that duration of observed signal block 
sequence is equal to 40 ms, the DFT frequency resolution 
equals 25 Hz. This results with 25, 50 and 75 Hz bins on the 

frequency axis. Since interesting component of grid voltage 
is usually in vicinity of 50 Hz there is no need to count FFT 
at all points except in, for instance, 49, 50 and 51 Hz bins as 
is shown in Fig. 4. Instead of using a one second duration of 
signal block sequence to obtain frequency resolution of 1 Hz 
one can use the following convolution expression 

   n
N
MN

n
M nvV







2j1

0
e  (19) 

to obtain corresponding frequency bins where M = {49, 50, 
51}. The main advantage of (19) in comparison to DFT 
calculation is a shorter signal processing time since only 
three bins need to be processed and the length of block 
sequence needs to be at least 20 ms. 

E. Windowing technique 
 To avoid consequences of spectral leakage and to 
improve accuracy of voltage magnitude and frequency 
estimated values a windowing technique is utilized [3], [7], 
[8]. Instead of (10), DFT spectrum of observed data block 
may be computed using a preselected windowing function as 
follows 
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where w[n] is usually the discrete Hanning windowing 
function that is used to extract a portion of the infinite 
length original sequence, and B is the DFT’s normalization 
factor 
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 It is important to note that fractional correction term λm is 
more accurate when windowing technique is applied. 
However, authors’ focus is on how to find the correction 
term for determining the "accurate" frequency of the 
fundamental spectrum tone using computationally the most 
effective algorithm, which rectangular window is in 
comparison to Hanning window. This approach gives 
satisfactory accuracy and responsiveness as will be shown 
later in the paper. 

III. DESCRIPTION OF MODEL 
 Performance analysis of estimation algorithms has been 
carried out in MATLAB/Simulink environment by xPC 
Target model shown in Fig. 7 [11]. Presented model enables 
user to perform pure simulations on local (Host) computer as 
well as to perform rapid prototyping, i.e. hardware-in-the-
loop testing on remote (Target) computer equipped with I/O 
hardware units. The mode of operation depends entirely on 
position of the two manual switches shown in Fig. 7. 
 The model consists of three parts. The first part (middle 
of Fig. 7.) comprises of setpoint magnitude and frequency 
generator in accordance with (4)-(9). The main task of this 
part is to generate cosine and sine reference signals with 
arbitrary magnitude and frequency that acts as a rough 
approximation of the actual situation in the real power grid. 
At the same time these signals are also connected with 
analog output (D/A) block so they can be monitored as 
process variables by independent third-party measurement 
equipment. When manual switch is in “Simulation only” 
position these signals serve as inputs to estimation algorithm. 
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(4)-(9). The main task of this part is to generate cosine and sine referen-
ce signals with arbitrary magnitude and frequency that acts as a rough 
approximation of the actual situation in the real power grid. At the same 
time these signals are also connected with analog output (D/A) block so 
they can be monitored as process variables by independent third-party 
measurement equipment. When manual switch is in “Simulation only” po-
sition these signals serve as inputs to estimation algorithm. Since referen-
ce signals are a priori known this mode of operation serves for theoretical 
accuracy and responsivity evaluation.

The second part (top of Fig. 7.) encompasses hardware analog input (A/D) 
block with offset and gain blocks for tuning accuracy in combination with 
blocks for transformation of two line-to-line voltages (Uac, Ubc) into αβ 
variables, i.e. complex signal [9]. Manual switch position “Calibration” de-
termines independent calibration procedure while position “Measurement” 
determines direct grid voltage syncrophasor measurements.

Finally, the third part (bottom of Fig. 7.) encompasses estimation algorithm. 
After generating a complex signal that represents transformed αβ variables 
of three-phase voltage system, independently of switch position “Simulati-
on only” or “Calibration/Measurement”, three convolution sums for 49, 50 
and 51 Hz are calculated. As can be seen for optimal deployment regar-
ding computation and memory requirements it is preferable to implement 
convolution sum (19) in recursive form as is shown in Fig. 5.

Fig. 5 Recursive model of convolution sum (19), delay d = N.

SIMULATION RESULTS
Validity of previously described model as well as interpolation algorithms 
has been confirmed by numerous simulations under various grid operating 
conditions. Representative response on how estimated frequency tracks 
setpoint frequency is shown in Fig. 6.

To quantify quality of frequency estimation error the following expression 
is used

  (25)

where fest is the estimated frequency value, and fset is the frequency 
setpoint.

Fig. 6 Comparison of setpoint and estimated frequency for ΔF = 0.12 Hz and (Ω/2π) 
= 20 mHz
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ted estimation procedure is very accurate. The same is also valid for the 
interpolation algorithm based on windowing technique but computation 
time is longer while expected estimation error is less than the one shown in 
Fig. 8, i.e. the slope of line is lower.
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Fig. 8 Maximum estimation error versus modulation frequency.

EXPERIMENTAL SETUP
The main part of the experimental setup is xPC Target platform in MA-
TLAB/Simulink environment which enables rapid hardware-in-the-loop 
prototyping at affordable price-to-performance ratio. Laboratory testbed 
for grid voltage synchrophasor measurement is shown in Fig. 9. The stan-
dalone xPC Target computer showing real-time voltage monitoring is 
shown on the left side of the photography while on the right side is the 
Host PC showing xPC Target model on the middle screen and oscillosco-
pe software on the right screen. For interaction with outside world 12-bit 
National Instruments’ I/O data acquisition board PCI-6024E, located within 
desktop Target PC, is used. Since analog inputs’ voltage measurement 
range are ±10 V a two 25 MHz bandwidth Pico Technology’s TA057 diffe-
rential probes were used for grid voltage measurement. For voltage and 
frequency calibration purposes independent measuring equipment con-
sisting of Hewlett Packard’s 3457A digital multimeter in combination with 
TiePie’s HandyScope HS5 digital USB oscilloscope were used.

Fig. 9 Laboratory setup for grid voltage synchrophasor monitoring.

EXPERIMENTAL RESULTS
Prior to recording grid voltage measurements calibration of laboratory se-
tup was performed. As a first stage, internal calibration procedure was 
carried out in order to verify estimation algorithm accuracy and compen-
sate for D/A and A/D offsets and gains. This is done simply by putting the 
left manual switch to “Calibration” position and the right switch in Fig. 7 to 
“Calibration/Measurement” position, and directly connecting analog out-
puts with corresponding analog inputs. At the same time multimeter and 
oscilloscope are also connected in parallel with board’s I/O. Steady-state 
voltage waveforms of test signals during testbed calibration procedure 
are shown in Fig. 10. Response to dynamic frequency setpoint change 
obtained from standalone xPC Target system is shown in Fig. 11 which 
validates effectiveness of proposed estimation algorithm.

FDig. 10 Waveforms of test signals during testbed calibration procedure.

Fig. 11 Online monitoring of synchrophasor during calibration procedure for ΔF = 
0.09 Hz and (Ω/2π) = 2 Hz.

In the second stage, after physically disconnecting analog inputs and out-
puts, external calibration procedure was carried out using programmable 
function generator under known conditions. For this purpose, the same 
USB oscilloscope is used since it is equipped with arbitrary waveform ge-
nerator. Again, these measurements served as additional confirmation of 
calibration procedure.

After tuning offsets and gains steady-state voltage accuracy of 0.1 % of 
full-scale range and 1 mHz frequency accuracy were achieved. It should 
be emphasized that during transients estimated frequency value lags set-
point value by 10 ms, i.e. N/2 samples.

In order to encompass grid voltage measurement range separately cali-
brated differential probes with gains equal to 200 are connected to corres-
ponding analog inputs. Steady- state waveforms of the line-to-line grid 
voltages during laboratory experiments are shown in Fig. 12. One can see 
that actual measured voltages can be unbalanced, and their frequency 
spectrums have higher harmonics besides the fundamental one. It should 
be pointed out that shown line-to-line voltages are deliberately chosen in a 
such a way to apply following αβ transformation formulas [9]

  (22)

while the zero-sequence voltage is always equal to zero.
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frequency was approximately 49.97 Hz, i.e. it deviates 30 
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the IpDFT algorithm. Simulation analysis performed in 
MATLAB/Simulink demonstrate accuracy and responsivity 
of the algorithm given in the paper. In addition, calibration 
procedure performed using programmable function generator 
under known conditions as well as experimental analysis of 
grid voltage has also been carried out. The main advantage 
of implemented convolution sum technique realized in 
recursive form in comparison to classic DFT algorithms is 
speed and memory optimization. This study has been carried 
out in order to validate described measurement system for 
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“small” local power electric system. Deployment of the 
presented algorithm to FPGA as well as introduction of a 
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Note that the grid voltage magnitude ac component is significantly lower in 
comparison to the steady-state value. Thus, for the sake of simplicity the 
magnitude low-pass filter is omitted in Fig. 7.

Finally, representative response in Fig. 13 is selected as it shows a part of 
7-minute interval where average grid frequency was approximately 49.97 
Hz, i.e. it deviates 30 mHz from the rated value. Future work will invol-
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cedure performed using programmable function generator under known 
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